Irregular primes to two billion

Bill Hart, David Harvey and Wilson Ong

1st September 2016
ANTS XII, Kaiserslautern
EXECUTIVE SUMMARY:

- A prime p is *irregular* if it divides the class number of $\mathbb{Q}(\zeta_p)$. First irregular prime is $p = 37$.
Executive summary:

- A prime p is *irregular* if it divides the class number of $\mathbb{Q}(\zeta_p)$. First irregular prime is $p = 37$.
- Search bounds for irregular primes:
 - 1874: $p < 163$ (Kummer)
 - 2001: $p < 12,000,000$ (Buhler et al)
 - 2011: $p < 163,577,856$ (Buhler & Harvey)
A prime p is *irregular* if it divides the class number of $\mathbb{Q}(\zeta_p)$. First irregular prime is $p = 37$.

Search bounds for irregular primes:

1. 1874: $p < 163$ (Kummer)
3. 2001: $p < 12,000,000$ (Buhler et al)
4. 2011: $p < 163,577,856$ (Buhler & Harvey)

We did $p < 2^{31} = 2,147,483,648$.

Running time: 8.6 million core hours = 981 core years.

Results: nothing interesting happened.

Kummer–Vandiver conjecture holds for all p.

Cyclotomic invariants are the most boring possible.

Accepted by Math Comp this morning.
Executive summary:

- A prime p is *irregular* if it divides the class number of $\mathbb{Q}(\zeta_p)$. First irregular prime is $p = 37$.
- Search bounds for irregular primes:
 - 1874: $p < 163$ (Kummer)
 - 2001: $p < 12,000,000$ (Buhler et al)
 - 2011: $p < 163,577,856$ (Buhler & Harvey)
- We did $p < 2^{31} = 2,147,483,648$.
- Running time: 8.6 million core hours $= 981$ core years.
Executive summary:

- A prime p is *irregular* if it divides the class number of $\mathbb{Q}(\zeta_p)$. First irregular prime is $p = 37$.
- Search bounds for irregular primes:
 - 1874: $p < 163$ (Kummer)
 - 2001: $p < 12,000,000$ (Buhler et al)
 - 2011: $p < 163,577,856$ (Buhler & Harvey)
- We did $p < 2^{31} = 2,147,483,648$.
- Running time: 8.6 million core hours = 981 core years.
- Results: nothing interesting happened.
 Kummer–Vandiver conjecture holds for all p.
 Cyclotomic invariants are the most boring possible.
Executive summary:

- A prime p is *irregular* if it divides the class number of $\mathbb{Q}(\zeta_p)$. First irregular prime is $p = 37$.
- Search bounds for irregular primes:
 - 1874: $p < 163$ (Kummer)
 - 2001: $p < 12,000,000$ (Buhler et al)
 - 2011: $p < 163,577,856$ (Buhler & Harvey)
- We did $p < 2^{31} = 2,147,483,648$.
- Running time: 8.6 million core hours = 981 core years.
- Results: nothing interesting happened.
 - Kummer–Vandiver conjecture holds for all p.
 - Cyclotomic invariants are the most boring possible.
- Accepted by Math Comp this morning ☺️