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Preface

In tropical geometry, algebraic varieties are replaced by combinatorial objects in the hope that
the combinatorial objects still carry relevant information about the algebraic counterparts while
being easier to study. Ideally, one can formulate a question both on the algebraic and on the
tropical side, answer it on the tropical side and transfer the answer back to the algebraic setup.
The transformation process is called “tropicalization” and there are various ways to describe it,
see e.g. the introductory article [Gat06]. The combinatorial objects on the tropical side are pure-
dimensional polyhedral complexes, which fulfill a “balancing condition” at each polyhedron of
codimension one.

The technique of transforming algebraic questions into tropical ones has already been used success-
fully, especially in enumerative geometry of plane curves. A starting point was the correspondence
theorem by Grigory Mikhalkin [Mik05], which states that the number of projective curves of de-
gree d and genus g passing 3d+ g − 1 points in P2 is equal to the number of plane tropical curves
of degree d and genus g passing the same number of points in R2, counted with multiplicity. It
is not only known that these numbers do not depend on the position of the points, they can also
be calculated. On the algebraic side, in [CH98] a recursive formula is established that determines
these numbers in any genus. The same and similar ideas have been applied on the tropical side
[GM07b] [BM08], yielding the same recursive formula. There have been various other results in
plane enumerative tropical geometry, e.g. [IKS08, BGM12, GMS12, BBM11].

Algebraic enumerative geometry. The main strategy to count geometric objects fulfilling
a collection of conditions is to construct a moduli space which parameterizes the objects. The set
of objects which fulfill a given condition is then a subspace of the moduli space. By intersecting
the arising subspaces, we obtain the points in the moduli space that correspond to the objects
that fulfill all desired conditions at the same time. Since we want to count objects fulfilling given
conditions, the conditions are chosen in way that the number of these objects is finite, i.e. the
intersection of the subspaces is zero-dimensional. The main tool to study enumerative questions is
therefore intersection theory on moduli spaces.

In algebraic geometry, main objects of interest are the moduli spaces M̄g,n(Pm, d) of stable maps
(C, x1, . . . , xn, f) of degree d with n marked points in genus g, see e.g. [BM96]. Such a stable
map (C, x1, . . . , xn, f) consists of a curve C of genus g with n marked points x1, . . . , xn and of a
map f : (C, x1, . . . , xn) → Pm that fulfills that the push-forward f∗[C] has degree d and that f
has finitely many automorphisms. One considers stable maps to Pm instead of algebraic curves of
degree d embedded in Pm because their moduli space behaves in a better way.

The moduli space M̄g,n(Pm, d) is a Deligne-Mumford stack and has an expected virtual dimension.
Its actual dimension, however, can be larger and needs not to be constant. The space M̄g,n(Pm, d)
is considered a compactification of the subspaceMg,n(Pm, d) which consists of stable maps whose
underlying curves are smooth. However, Mg,n(Pm, d) is in general not dense in M̄g,n(Pm, d). In
the case that the underlying curves are rational the dimensions of the two spaces coincide.

For each marked point xi with i ∈ [n] there exists an evaluation map

evi : M̄g,n(Pm, d) → Pm

(C, x1, . . . , xn, f) 7→ f(xi),

which evaluates the map f at the point xi. The maps evi are morphisms.

v
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If we want to count curves of degree d in Pm which fulfill a general collection L = (Li)i∈[n] of
incidence conditions in Pm, i.e. which intersect all subvarieties L1, . . . , Ln of Pm, there exist two
approaches using moduli spaces to tackle this problem.

In [Vak00], the following approach is used for counting rational and elliptic curves in Pm (i.e. the
genus g of the curves is zero or one). One considers the closure X 1 of the set of smooth stable maps
(C, x1, . . . , xn, f) ∈ Mg,n(Pm, d) which fulfill all conditions L1, . . . , Ln, i.e. it holds evi(xi) ∈ Li
for all i ∈ [n]. (It is moreover demanded in the elliptic case that no component of arithmetic genus
one is contracted to a point.) If the dimension of X 1 is zero, the enumerative number N1

cplx(d, g,L)

of curves of degree d and genus g in Pm is defined as the degree deg(X1) of X 1. The number does
not change if we replace L1, . . . , Ln by rationally equivalent varieties.

Another approach using so-called Gromov-Witten-invariants is the following, see e.g. [BM96].
There can be constructed a naturally defined virtual fundamental class

[M̄g,n(Pm, d)]vir ∈ A∗(M̄g,n(Pm, d))

in the chow group of the moduli space. This virtual class has the expected virtual dimension of
M̄g,n(Pm, d). The pull-back of the subvarieties Li along the evaluation maps evi can be interpreted
as the geometric condition that the curves pass the subvarieties Li, and hence we consider the
intersection product

X 2 = ev∗1[L1] · · · · · ev∗n[Ln] · [M̄g,n(Pm, d)]vir.

If X 2 is zero-dimensional, the virtual number N1
cplx(d, g,L) = deg(X 2) does not change if we

replace L1, . . . , Ln by rationally equivalent varieties.

In the case of rational curves, the virtual fundamental class is equal to the usual fundamental class
and the two invariants coincide, i.e. it holds N1

cplx(d, g,L) = N2
cplx(d, g,L). In general, this is not

true.

Let us turn to the question how and if these enumerative invariants can be calculated.

As already mentioned above, in the case of plane curves (i.e. curves in P2) a recursive formula is
established in [CH98] that allows us to calculate the enumerative numbers N1

cplx(d, g,L) in any
genus. Even more, with the formula also relative invariants can be calculated: The term relative
means that we impose, in addition to the incidence conditions L1, . . . , Ln, tangency conditions to
subvarieties T1, . . . , Tj of a hyperplane H ⊂ Pm.

The idea used in [CH98] is the following: The incidence and tangency conditions to the hyperplane
H, which is in this case a line, are specialized (i.e. the varieties are translated) in a way that the
curves C which fulfill all incidence and tangency conditions split up into components C0, . . . , Cl
such that C0 lies in the hyperplane H and such that the other components C1, . . . , Cl are not
(completely) contained in H. Instead of counting the curves C of degree d and genus g, the
decomposed curves C0, . . . , Cl (fulfilling derived incidence and tangency conditions) are counted.
The data of the decomposed curves is simpler than that of the original curves and a recursion
appears.

The same idea of specializing the incidence and tangency conditions is used in [Vak00] to calculate
the enumerative numbers N1

cplx(d, g,L) in the case of rational and elliptic curves in any dimension.

There are no known formulae which allow to compute the enumerative numbers N1
cplx(d, g,L) in

the case that the genus is greater than one and that the dimension of the ambient space is strictly
greater than two.

In the case of virtual invariants, a constructive formula has been proven in [Gat03] with which the
virtual invariants can be calculated in any degree, genus and dimension, using relations between
them.

Tropical enumerative geometry. Ideas that are similar to the explained techniques in
algebraic enumerative geometry have also been used successfully in tropical geometry, and various
algebraic results mentioned above have been proven also on the tropical side.

A tropical curve is a metric graph with unbounded leaves that fulfills a balancing condition at
every vertex. The tropical analogue of an n-marked stable map to Pm of degree d and genus
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g is a parametrized n-marked tropical curve (C, h) of degree d and genus g in Rm. With the
algebraic setup in mind, we can think of (C, h) as a triple (C, x1, . . . , xn, h) where C is a smooth
(abstract) tropical curve of genus g, x1, . . . , xn are marked points on C and h : C → Rm is a
tropical morphism. The curve has degree d if h(C) has precisely d leaves in each of the standard
directions −e1, . . . ,−em,−e0 =

∑m
i=1 ei ∈ Rm.

The translation of the enumerative algebraic question dealt with above to tropical geometry is the
following: Given a collection L of incidence conditions L1, . . . , Lm in Rm, which are tropical Lmm-
directional varieties (i.e. their recession fan has standard directions and is therefore some Lmk ), how
many parameterized n-marked tropical curves (C, h) of degree d and genus g, counted with multi-
plicity mult(C, h,L), fulfill all conditions L1, . . . , Ln? We denote this number by Ntrop(d, g,L).

Why do we count with multiplicity and what does mult(C, h,L) stand for? Remember that the
main motivation for dealing with tropical geometry is its relation to algebraic geometry. We want
to answer algebraic questions on the tropical side. So assume that the collection L′ of incidence
conditions L′1, . . . , L

′
n in Pm tropicalizes to the tropical varieties L1, . . . , Ln in Rm. Then the

multiplicity mult(C, h,L) is defined as the number of stable maps (C, x1, . . . , xn, f) that fulfill all
algebraic incidence conditions L′1, . . . , L

′
1 and such that f∗C tropicalizes to h(C). In particular, if

mult(C, h,L) is greater than zero, (C, h) fulfills all tropical incidence conditions Li (which are the
tropicalizations of the algebraic varieties L′i).

It follows from this definition of the multiplicities that the algebraic invariant N1
cplx(d, g,L′) is

equal to the number Ntrop(d, g,L). Therefore, also the tropical number Ntrop(d, g,L) does not
depend on the position of the varieties L1, . . . , Ln in Rm.

In the case of plane tropical curves and in the case of rational tropical curves in any dimen-
sion, there exists correspondence theorems which state a formula for calculating the multiplicities
mult(C, h,L), see [Mik05, NS06, Tyo12]. For elliptic curves in Rm with m > 2, there exist
only partial correspondence theorems dealing with the case that the edges in the loop of the curve
span the ambient space Rm, see [Tyo12, Nis09]. Moreover, there are additional (but not com-
plete) results in [Spe07, Kat10] dealing with the question which elliptic tropical curves in Rm
are realizable.

In the case of rational curves, the multiplicities mult(C, h,L) do not only have an interpretation
on the algebraic but also purely on the tropical side. The tropical moduli space M0,n(d,Rm)
of parameterized n-marked rational tropical curves of degree d in Rm is a well-studied tropical
variety, i.e. a pure-dimensional polyhedral complex which fulfills a balancing condition at every
cell of codimension one. As on the algebraic side, there exist evaluation maps evi, which are
morphisms, that evaluate a curve (C, h) at the marked point xi, i.e. evi(C, h) = h(xi). Using
tropical intersection theory as developed in [Sha12, AR10, FR12], we can define the intersection
product

∏n
i=1 ev∗i Li · M0,n(d,Rm). Using the correspondence theorems, it has been shown in

[Rau05] that the multiplicity mult(C, h,L) is equal to the weight of the point (C, h) in this
intersection product. It hence holds in the rational case that the invariant Ntrop(d, 0,L) is equal
to the degree of the intersection product

n∏
i=1

ev∗i Li · M0,n(d,Rm).

Note the similarity to the algebraic definition of the virtual invariants N2
cplx(d, 0,L′).

Tropical moduli spaces of abstract n-marked tropical curves (i.e. curves without a map to Rm)
have been defined in any genus, e.g. [Cap12, Cha12]. However, for genus greater than zero these
moduli spaces do not have a structure as tropical varieties but only as topological spaces or stacky
fans (think of the latter as fans modulo a group action on the cones). Moduli spacesM′g,n(d,Rm)
of parameterized n-marked tropical curves of degree d and genus g have been studied in [KM09]
in the case of plane elliptic curves and in [Her09] in any genus and any dimension. These moduli
spaces have a structure as a weighted polyhedral complex and as a tropical local orbit space,
respectively. We can think of tropical local orbit spaces as abstract tropical varieties modulo a
group action on the cells of the underlying polyhedral complex. However, for m > 2 these moduli
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spaces are, at least in the elliptic case, not appropriate for tackling enumerative questions. On
the one hand, not all elliptic curve which are known to be realizable are contained in the local
orbit space M′1,n(∆,Rm) defined in [Her09]. (All curves (C, h) ∈ M′1,n(∆,Rm) fulfill that the
direction vectors of edges in and at the loop of h(C) span Rm. However, all 3-valent well-spaced
elliptic curves in Rm are realizable - and well-spacedness does not restrict the dimension of the
space spanned by the edges in and at the loop, see [Spe07]). On the other hand, it can be checked
in small examples of curves in R3 that the intersection product

n∏
i=1

ev∗i (Li) · M′1,n(∆,Rm)

is in general not independent of the position of the varieties L1, . . . , Ln in Rm.

Results of this thesis. We study enumerative tropical questions in Rm for m ≥ 2. Our
approach is purely tropical and based on tropical intersection theory as developed in [Sha12,
AR10, FR12].

In chapter 2 we deal with rational curves in Rm. Using tropical intersection theory on the moduli
spaces of rational parametrized curves, we establish with purely tropical means a recursive formula
that allows to determine the degree of

n∏
i=1

ev∗i Li · M0,n(d,Rm),

where L1, . . . , Ln is a collection of Lmm-directional tropical varieties, i.e. the varieties have standard
directions. As in the algebraic case, as a side product also relative invariants can be computed.
The formula is the tropical analogue of the recursive formula proven in [Vak00] with which one
can calculate the enumerative number of algebraic rational curves of degree d in Pm passing a
configuration of subvarieties of Pm.

As mentioned above, there already existed an indirect proof of this recursive formula using the
detour over algebraic curves via correspondence theorems. Our approach is a tropical version of
[Vak00] merged with ideas used in the plane tropical case [GM07b]. A related result about the
recursive structure of the multiplicity of a rational tropical curve is stated in [BM07].

In chapter 3 we study elliptic curves.

• We develop a combinatorial notion of a well-spaced elliptic curve in Rm, which is based on
the known necessary and sufficient conditions on the realizability of elliptic curves in Rm.
In particular, for m > 2, a well-spaced elliptic curve fulfills all known necessary realizability
conditions and all elliptic curves which are known to be realizable are also well-spaced.

• We construct a pure-dimensional weighted polyhedral complex M1,I(∆,Rm) parameter-
izing I-marked well-spaced curves of degree ∆ in Rm, where I is an index set labeling the
marked points of a curve.

• We define an open and dense weighted subcomplex M1,I(∆,Rm)reg of M1,I(∆,Rm) con-
taining only elliptic curves which have an “honest” loop, i.e. the first Betti number of
the support of the curve is one. The weighted polyhedral complex M1,I(∆,Rm)reg is an
abstract (open) tropical variety, non-regular curves without honest loop are missing and
M1,I(∆,Rm)reg hence has “holes”.

• We prove an enumerative statement: Let L1, . . . , Ln be translated tropical fans in Rm that
are complete intersections, i.e. they can be cut out by rational functions on Rm. Then the
degree of the intersection product

n∏
i=1

ev∗i Li · M1,n(∆,Rm)reg

is independent of the position of the translated fans Li in Rm as long as their position is
general. The degree of this intersection product can be interpreted as the the number of
well-spaced elliptic curves in M1,I(∆,Rm)reg passing a general configuration of tropical
fans in Rm, counted with an intersection-theoretic multiplicity. It is not known of this
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tropical invariant whether it is equal to the corresponding enumerative or virtual algebraic
invariant.

At the end of the thesis an index of the notations is provided. The figure on page 4 has been
produced with the help of the polymake application a-tint written by Simon Hampe using jReality.
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CHAPTER 1

Preliminaries

In this chapter, we recall some definitions and results concerning polyhedral complexes and tropical
varities, intersection theory of tropical varieties as developed in [Sha12, AR10, FR12] and moduli
spaces of rational tropical curves, e.g. [Mik07] [GKM09]. The developed notions and the stated
results will be needed in the subsequent chapters.

1.1. Polyhedral complexes and tropical varieties

If Λ is a lattice, we denote the dual lattice by Λ∨. We regard Rm as a vector space containing
the lattice Zm with the usual embedding. We denote the standard unit vectors by e1, . . . , em and
define e0 := −

∑
i∈[m] ei.

Definition and notaion 1.1.1 (Saturation and index of a lattice)
Let Λ be a lattice and let ΛR := Λ⊗ZR be the corresponding real vector space containing Λ. Given
a sublattice Λ′ ⊂ Λ, we call

sat(Λ′) := Λ ∩ (Λ′ ⊗Z R)

the saturation of Λ′.

A morphism of lattices f : Λ1 → Λ2 corresponds to a linear map of the corresponding real vector
spaces f : (Λ1)R → (Λ2)R which maps Λ1 to Λ2. By abuse of notation we denote the two maps
identically. We define the index of f by

ind f := [sat(im f) : im f ] ∈ N.
Given a sublattice Λ′ of a lattice Λ we define the index of Λ′ as the index of the inclusion map
i : Λ′ ↪→ Λ. For elements y1, . . . , ys ∈ Λ we define ind(y1, . . . , ys) as the index of the lattice spanned
by y1, . . . , ys.

Definition 1.1.2 ((General) cone, polyhedron)
A general polyhedron in ΛR is a subset ∅ 6= τ ⊂ ΛR that can be described by finitely many affine
linear integral equalities and inequalities, i.e. a set of the form

τ = {x ∈ ΛR|fi(x) = ai for all i ∈ I, fj(x) ≥ bj for all j ∈ J, fk(x) > ck for all k ∈ K}
for some finite index sets I, J,K, affine linear forms fi, fj , fk ∈ Λ∨ and real numbers ai, bj , ck.

We denote by W(τ) the smallest linear subspace of ΛR containing all x− y for all x, y ∈ τ and by
Λ(τ) the lattice W(τ) ∩ Λ. We define the dimension of τ to be the dimension of W(τ).

A general polyhedron τ is called a polyhedron if it is closed, i.e. the affine linear forms fi, fj , fk
can be chosen in a way that no strict inequalities occur.

A (general) polyhedron is called a (general) cone if all ai, bj and ck can be chosen to be zero.

Definition 1.1.3 ((Abstract) polyhedral complex)
An abstract polyhedral complex X = (X,Y, {ϕσ}) is a topological space Y together with a finite
set X of closed subsets of Y and embedding maps ϕσ : σ → (Λ(σ))R = Λ(σ)⊗Z R for every σ ∈ X
(i.e. ϕσ is continuous and injective), called polyhedral charts, such that

a) for all σ, σ′ ∈ X with σ∩σ′ 6= ∅ there exist n ∈ N and σ1, . . . , σn ∈ X with σ∩σ′ = ∪ni=1σi,
b) every image ϕσ(σ), σ ∈ X, is a general polyhedron in (Λ(σ))R such that W(ϕσ(σ)) =

(Λ(σ))R, i.e. W(ϕσ(σ)) (which is defined in 1.1.2) is not contained in a proper subspace of
(Λ(σ))R,

1



2 1. PRELIMINARIES

c) for every pair σ, σ′ ∈ X with σ ⊂ σ′ the maps ϕσ ◦ ϕ−1
σ′ and ϕσ′ ◦ ϕ−1

σ are affine Z-linear
where defined,

d) Y =
⋃̇
σ∈Xϕ

−1
σ (ϕσ(σ)◦), where ϕσ(σ)◦ denotes the interior of ϕσ(σ) in W(ϕσ(σ)).

X is called the polyhedral structure of X and is denoted by pol(X ), Y is the support supp(X ) of
X . The elements of X are called polyhedra or cells of X and σ ∈ X is called a face of σ′ ∈ X
if σ ⊂ σ′. An inclusion-maximal polyhedron is called a facet. The relative interior of σ ∈ X is
defined as σ◦ = ϕ−1

σ (ϕσ(σ)◦). The dimension of a polyhedron σ ∈ X is defined as the dimension
of ϕσ(σ) and the dimension of the polyhedral complex as the maximal dimension of its polyhedra.
We will denote the set of all k-dimensional polyhedra of X by X(k), elements are called k-cells. A
polyhedral complex is called pure-dimensional if all facets have the same dimension.

For all σ ∈ X, we define W(σ) = W(ϕσ(σ)) and Λ(σ) = Λ(ϕσ(σ)).

A polyhedral complex X in ΛR is an abstract polyhedral complex (X,Y, {ϕσ}) with Y ⊂ ΛR such
that all polyhedral charts ϕσ : σ → Λ(σ) ⊂ ΛR are translations by an element of ΛR (where the
target space is restricted to Λ(σ)) and such that all σ ∈ X are closed in ΛR. We call it an open
polyhedral complex if there exists σ ∈ X that is not closed in ΛR.

We denote (X,Y, {ϕσ}) by X only because Y is given by
⋃
σ∈X σ ⊂ ΛR and because the polyhedral

charts ϕσ are translations such that ϕσ(σ) ⊂W(σ).

Definition 1.1.4 ((Open) subcomplex, refinement)
Let X = (X, supp(X ), {ϕσ}), Y = (Y, supp(Y), {ψτ}) be two abstract polyhedral complexes. We
say that X is a subcomplex of Y if

a) for every σ ∈ X there exists τ ∈ Y such that σ is a closed subset of τ ,
b) for every pair σ ∈ X, τ ∈ Y with σ ⊂ τ the maps ψσ ◦ψ−1

τ and ψτ ◦ϕ−1
σ are integer affine

linear where defined.

In particular |X| is a closed subset of |Y |. If there exist σ ∈ X and τ ∈ Y such that the inclusion
σ ⊂ τ is not closed, we call X an open subcomplex of Y. We call X a refinement of Y if X is a
subcomplex of Y that fulfills |X| = |Y |.

Definition 1.1.5 (UX (σ))
Let X be an abstract polyhedral complex and σ ∈ X. The polyhedral complex UX (σ) is defined
as the open subcomplex of X whose support is

supp(UX (σ)) =
⋃

τ∈X,σ◦⊂τ
τ◦

and whose polyhedral structure is given by {τ ∩ supp(UX )(σ)|τ ∈ pol(X )}.
We just write U(σ) instead of UX (σ) if no confusion can occur. A subset U ⊂ supp(X) is called
polyhedral set if there exist σ1, . . . , σk ∈ pol(X ) such that U =

⋃
i∈[k] supp(UX (σi)). In particular,

if σ ∈ pol(X ) and σ◦ ⊂ U , it follows τ◦ ⊂ U for all τ ∈ pol(X ) with σ ⊂ τ .

Definition 1.1.6 ((Open) fan, normal vector)
A fan in ΛR is a polyhedral complex in ΛR that is a refinement of a polyhedral complex in ΛR
whose polyhedra are all (closed) cones in ΛR. An open fan F in ΛR is an open polyhedral complex
in ΛR such that there exists a fan G in ΛR that fulfills that F is a refinement of UG({0}). Note
that every fan is an open fan.

Let F be an open fan and let σ, τ ∈ F with τ ⊂ σ and dim τ = dimσ − 1. Then there exists
f ∈ Λ(σ)∨ with f |W(τ) = 0W(τ) and f(p) > 0 for all p ∈ σ \ τ . The primitive integer vector

uσ/τ ∈W(σ)/W(τ)

which fulfills f(u) > 0 and 〈Λ(τ), {u}〉 = Λ(σ) (which is the span of Λ(τ) and u in ΛR) for all
u ∈ uσ/τ is called normal vector of σ with respect to τ . It is unique in W(σ)/W(τ).

Remark 1.1.7
Every abstract polyhedral complex has a refinement such that the intersection of two polyhedra is
either empty or a single polyhedron:
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Let us consider polyhedra in Rm. A polyhedron τ ⊂ Rm has a natural structure of a polyhedral
complex pol(τ) in Rm. We define a refinement: Choose a rational point p ∈ τ◦ (i.e. a point such
that the convex hull of p and σ ∈ pol(τ) is a rational polyhedron for all σ ∈ pol(τ)) and for all
σ ∈ pol(τ) \ {τ} define σp ⊂ Rm as the convex hull of p and σ. Set

pol(τ(p)) := {σp|σ ∈ pol(τ) \ {τ}} ∪ {{p}} ∪ {q ∈ pol(τ)(0)}.

Then, pol(τ(p)) is a refinement of pol(τ) that has the following property: For all maximal σ ∈
pol(τ(p)) there exists precisely one σ′ ∈ pol(τ) of codimension one which fulfills σ′ ⊂ σ.

Using this idea for refining an abstract polyhedral complex X , starting with the cells of dimension
one in pol(X ) and proceeding to the facets, we get a refinement X ′ of X for which the following is
true: For every σ1, σ2 ∈ pol(X ′) with σ1 ∩ σ2 6= ∅, there exists σ ∈ pol(X ′) with τ1 ∩ τ2 = τ .

Definition 1.1.8 (Weighted (reduced) polyhedral complex, refinement)
A d-dimensional weighted (abstract) polyhedral complex is a pure-dimensional (abstract) poly-
hedral complex X of dimension d ∈ N together with a weight function ωX : pol(X )(d) → Z. A
weighted open fan is defined similarly. If no confusion can occur, we denote it by X only.

Set X∗ = {σ ∈ pol(X )||∃τ ∈ pol(X )(d) : σ ⊂ τ, ω(τ) 6= 0}, |X∗| =
⋃
σ∈X∗ σ and X ∗ = (X∗, |X∗|).

Then (X ∗, ω|(X∗)(d)) is a weighted (abstract) polyhedral complex, too. We call (X , ωX ) reduced if

it is equal to (X ∗, ω|(X∗)(d)).

(Y, ωY ) is called refinement of the weighted polyhedral complex (X , ωX) if Y∗ is a refinement of
X ∗ and if for all facets σ ∈ pol(Y) and τ ∈ pol(X ) with σ ⊂ τ , it holds ω(σ) = ω(τ).

We define the polyhedral structure and the support of (X , ωX ) as the polyhedral structure and the
support of X .

Definition 1.1.9 (Tropical fan)
An (open) tropical fan F = (F, ω) of dimension d ∈ N in W is a weighted (open) d-dimensional
fan that fulfills the following balancing condition for all τ ∈ F (d−1):∑

σ:τ⊂σ∈F (d)

ω(σ) · uσ/τ = 0 ∈W /W(τ)

Example 1.1.10 (The tropical linear spaces Lmk )
Tropical fans that will appear frequently are the fans (Lmk , ω) in Rm: Set

Lmk = {{0},Conv(R≥0 · ei1 , . . . ,R≥0 · eik , 0)|ij ∈ {0, . . . ,m} ∀ j ∈ [k]}

and let the weight function ω be one on every facet.

Figure 1. The tropical linear spaces L2
1 and L3

2.

Definition 1.1.11 ((General) morphism of (open) tropical fans)
Let F1,F2 be (open) tropical fans in (Λ1)R and (Λ2)R. A morphism f : F1 → F2 is a map
supp(F1)→ supp(F2) that is the restriction of an affine Z-linear map W1 →W2, i.e. the compo-
sition of a translation by a real vector and a Z-linear map, such that for all σ ∈ F1 there exists
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Figure 2. Example of a tropical surface (green) in R3 and a subvariety (pink)
that is a curve.

τ ∈ F2 with a closed inclusion f(σ) ⊂ τ . If we drop the condition that the inclusion f(σ) ⊂ τ is
closed, we call f a general morphism.

An isomorphism of tropical fans is a bijective morphism f : F1 → F2 whose inverse is a morphism,
too, and that respects the weight functions of F1 and F2, i.e. ωF1

(σ) = ωF2
(τ) for all facets σ of

F1 and τ of F2 with f(σ) ⊂ τ .

If U1 ⊂ supp(F1), U2 ⊂ supp(F2) are polyhedral sets and g : U1 → U2 is a map that is on each
connected component the restriction of a (iso-)morphism of tropical fans then we call g tropical
(iso-)morphism, too.

Remark 1.1.12
There exist refinements of G1 and G2 of F1 and F2 such that f(σ) ∈ G2 for all σ ∈ G1.

Definition 1.1.13 ((Abstract, open) tropical variety, polyhedral neighborhood)
An abstract tropical variety X is a topological space |X| together with a finite atlas {ϕi : Ui →
supp(Fi)} where {Ui} is an open cover of supp(X) and where all ϕi are homeomorphisms into
the support of an open tropical fan Fi, which are called fan charts, such that the transition maps
ϕj ◦ϕ−1

i : ϕi(Ui∩Uj)→ ϕj(Ui∩Uj) are tropical isomorphisms for all i, j. (In particular ϕi(Ui∩Uj)
and ϕj(Ui ∩ Uj) are polyhedral sets in Fi and Fj , respectively.)

X∗ is the non-zero part of X, namely the abstract tropical variety with underlying topological
space

supp(X∗) = {x ∈ |X||∃i : ϕi(x) is contained in a facet of Fi with a non-zero weight} ⊂ |X|
and atlas {φi|Ui∩supp(X∗)}.
We define the support supp(X) of the tropical variety X as the non-zero part supp(X∗) of the
underlying topological space |X|.
A tropical variety is an abstract tropical variety such that the underlying topological space is a
closed subset of a real vector space ΛR and such that all fan charts are translations by an element
of ΛR. If the underlying topological space is not closed in ΛR, we call it an open tropical variety.

We identify abstract tropical varieties X = (|X|, {ϕ1
i : U1

i → F 1
i }) and X ′ = (|X ′|, {ϕ2

j : U2
j →

F 2
j }) that fulfill supp(X∗) = supp((X ′)∗) if their atlases are compatible, i.e. if ϕ1

i ◦ (ϕ2
j )
−1 are

tropical isomorphisms where defined.

Construction and definition 1.1.14 (Polyhedral structure of an abstract tropical variety, poly-
hedral neighborhood and set)
Let X = (supp(X), {ϕi : Ui → supp(Fi)}) be a representative of an abstract tropical variety. Set

pol(X) =
⋃
i{ϕ
−1
i (σ)|σ ∈ Fi}. Then pol(X) together with polyhedral charts induced by ϕi is an

abstract polyhedral complex X . This is true because the Fi are open tropical fans and because of
the following: For all σ ∈ Fi with ϕ−1

i (σ◦)∩Uj 6= ∅ it holds ϕj ◦ϕ−1
i (σ◦) = τ◦ for some τ ∈ Fj , see
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definitions 1.1.11 and 1.1.13. As weight function ω : pol(X)→ Z we choose the one that is induced
by the weight functions of the open tropical fans Fi (which is well-defined since isomorphisms of
tropical fans respect the weight functions).

If we choose a different representative X ′ of the same tropical variety, X and X ′ have a common
refinement.

An abstract polyhedral complex X that arises in this way from the tropical variety X is called a
polyhedral structure on X.

Let p ∈ supp(X). We call a neighborhood U ⊂ supp(X) a polyhedral neighborhood of p in X if
there exists a polyhedral structure X on X containing {p} such that U = UX ({p}), see 1.1.5 for
the notation. We call U ⊂ supp(X) a polyhedral set in X if there exist points p1, . . . , pk ∈ U with

polyhedral neighborhoods U1, . . . , Uk ⊂ supp(X) such that U =
⋃k
i=1 Ui.

Remark 1.1.15
Let X be an abstract tropical variety with polyhedral structure X . For σ ∈ pol(X ), the polyhedral
neighborhood UX (σ) of the polyhedron σ inherits from X a structure as tropical variety.

Example 1.1.16
There exist different abstract tropical varieties which have the same underlying topological space.
Here is an example:

We equip R2 with the lattice spanned by the standard unit vectors and let the topological space
|X| := R2 \{(0, 0)} be given by the plane without the origin. Let X be the tropical variety that has
|X| as underlying topological space, let the polyhedral structure be induced by the rays R<0 · e1,
R<0 · e2, R>0 · e1 and R>0 · e2 and let all fan charts be the identity maps. We define all weights to
be one.

Next, we consider the topological space

|Y | := {x ∈ R2|x1 ≥ 0, x2 > 0, x1 − 3x2 ≥ 0}/ ∼,

where ∼ is given as follows:

y ∼ y′ ⇔ y, y′ ∈ {x ∈ R2|x2 > 0, x1 = 0} ∪ {x ∈ R2|x2 > 0, x1 = 3x2} and y2 = y′2

Note that [(0, 0)] /∈ |Y |. The topological space |Y | is illustrated in figure 3 and the illustrated sets
σi, τi induce an abstract polyhedral complex Y with support |Y |, i ∈ [3] (where σi are the rays
{[((i − 1)x2, x2)]|x2 > 0} ⊂ |Y |). The set {U(σi)|i ∈ 1, 2, 3} is an open cover of |Y |, see notation
1.1.5.

σ1 σ2 σ3 σ1

τ1 τ2 τ3

Y

σ1

τ3 τ1

ϕ1(U(σ1))

Figure 3. Left: The polyhedral structure of Y defined in example 1.1.16. Right:
The image of U(σ1) under the fan chart ϕσ1

, which maps the intersection of U(σ1)
and the dashed line to the dashed line.

Except ϕ1, let the fan charts ϕi : U(σi) → R2 be given by the identity map. The fan chart ϕ1 is
given by [(x1, x2)] 7→ (x1 − 3x2, x2) on τ◦3 , by [(x1, x2)] 7→ (x1, x2) on τ◦1 and by [(0, x2)] 7→ (0, x2)
on σ◦1 (see figure 3). Let again all weights be one and denote this tropical variety by Y .

The topological spaces |X| and |Y | are homeomorphic. However, the tropical varieties X and Y do
not agree. For example, in Y there exists a loop which is a straight line in the lattice (the dashed
line in figure 3), which is not possible in X.
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Definition 1.1.17 (Subvariety)
Let X = {|X|, {φi}} be an abstract tropical variety. We call an abstract tropical variety C =
{|C|, {ψj}} subvariety of X if |C| is a closed subset of |X| and if φi ◦ψ−1

j and ψj ◦φ−1
i are tropical

morphisms where defined. We call C an open subvariety of X, if C fulfills the weaker condition
(compared to |C| ⊂ |X| closed) that there exist polyhedral structures C on C and X on X such
that C is an open subcomplex of X .

We denote the set of subvarieties of X by Z(X) and the set of d-dimensional subvarieties of X by
Zd(X).

Example 1.1.18
The open unit interval with weight one is an open subvariety of R with weight one, but not a
subvariety.

Lemma 1.1.19 ([AR10]: 5.15)
Let X be an abstract tropical variety. Given two closed subvarieties X1, X2 of dimension d, one
can define their sum X1 +X2, which is again a subvariety of X (see e.g. 5.14 in [AR10]). Zd(X)
together with this operation “+” forms an abelian group.

Remark 1.1.20
The statement of the previous lemma is not true for open subvarieties. Consider for example the
open intervals (0, 1) and (0, 2) with weight one as open subvarieties of R with weight one. Trying
to define the sum (0, 1) + (0, 2), it seems reasonable to choose (0, 1) ∪ (0, 2) = (0, 2) as underlying
topological space. Moreover, it seems reasonable to take {(0, 1], {1}, [1, 2)} as polyhedral structure
and define the weights as ω((0, 1]) = 2 and ω([1, 2)) = 1. However, this open polyhedral complex
is not balanced at {1}. In order to remedy this problem, we would have to allow polyhedral
structures with superposed polyhedra, e.g. {(0, 1), (0, 1], {1}, [1, 2)}. This is possible but not used
in this thesis. Therefore, we do not develop this concept here.

Definition 1.1.21 (Degree)
Let X be a zero-dimensional tropical variety. Then we define its degree by

deg(X) := 〈X〉 :=
∑

p∈supp(X)

ω(p).
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1.2. Intersection theory on tropical varieties

We recall some main definitions and results in tropical intersection theory from [Rau09], [All09]
and [FR12]. Additionally, we prove some corollaries that will be needed later on.

Intersection with rational functions.

Definition 1.2.1 (Rational function)
Let X be an abstract tropical variety and let U ⊂ supp(X) be an (open) polyhedral set. A rational
function on U is a continuous map ϕ : U → R such that there exists a polyhedral structure X
on X with polyhedral charts ϕσ for which ϕ ◦ ϕ−1

σ is affine Z-linear for all σ ∈ X . We call such
a polyhedral structure on X a ϕ-polyhedral structure and a representative that induces such a
structure a ϕ-representative. Note that the restriction of a rational function to a polyhedral subset
U ′ ⊂ U is a rational function on U ′.

Let the polyhedral complex X be a polyhedral structure on X. Then, for all σ ∈ pol(X ), there
exists a unique λ ∈ Λ(σ)∨ and c ∈ R such that ϕ ◦ ϕ−1

σ | = (λ+ c)|σ. We set ϕσ := λ.

Construction 1.2.2 (Intersection with rational functions)
Let X be an abstract tropical variety of dimension d ∈ N, C a subvariety of X and ϕ : U → R a
rational function on a polyhedral set U ⊃ supp(C). Choose a ϕ-representative (supp(C), {ϕi : Ui →
supp(Fi)}) with corresponding polyhedral structure C and denote by σi ∈ pol(C) the polyhedron
with Ui = UC(σi). We define the intersection product ϕ · C as the abstract tropical variety
(supp(C(d−1)), {ϕ′i}) where ϕ′i = ϕi|Ui∩supp(C(d−1)) and the weight function is given by

ωϕ·C : C(d−1) → Z

τ 7→
∑

σ∈C(d)

τ⊂σ

ϕσ

(
ω(σ)vσ/τ

)
− ϕτ

( ∑
σ∈C(d)

τ⊂σ

ω(σ)vσ/τ

)
,

where vσ/τ are arbitrary representatives of the normal vectors uσ/τ . (Note that
∑
ω(σ)vσ/τ ∈ Λτ

due to the balancing condition.)

Example 1.2.3
The tropical linear spaces Lmk arise as the intersection product

(max{0, x1, . . . , xm})m−k · Rm.

Proposition 1.2.4 ([Rau09]: 1.2.13, [AR10]: 6.4 and 6.7)
Let X be an abstract tropical variety and ϕ a rational function on X. Then ϕ ·X is a subvariety
of X of codimension one. It holds ϕ · (ψ ·X) = ψ · (ϕ ·X).

Remark 1.2.5
Let X be a tropical fan in Rm and let ϕ1, . . . , ϕr : Rm → R be integer linear functions. For
i ∈ [r] define ψi : Rm → R, x 7→ max{ϕi(x), 0}. Then, for any σ ∈ pol(X ),

∏
i∈[r] ψi · U(σ) is the

translation of a tropical fan in Rm.

Remark 1.2.6 (On the support and the weights in an intersection product)
Let r ∈ N and let X be a tropical fan in Rm. Let ϕi : X → Rm be rational functions and ai ∈ R,
i ∈ [r], and let X be a ϕi-representative for all i ∈ [r]. Then, by the definition of the intersection
product, the reduced part of the support of∏

i∈[r]

max{ϕi, ai} ·X

is contained in the union of the (dimX − r)-dimensional polyhedra σ ∈ X which fulfill that
max{ϕi, ai}|U(σ) is not affine linear for all i ∈ [r]. (If max{ϕj , aj}|U(σ) were affine linear, the
weight of σ in max{ϕj , aj} · U(σ) and hence in

∏
i∈[r] max{ϕi, ai} ·X would be zero.)
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Definition 1.2.7 (Star, e.g. [Rau09]: 1.2.3)
Let X be a tropical variety in a real vector space W and let X be a polyhedral structure on X.
Let σ ∈ pol(X ) and denote by q : W → W /W(σ) the quotient map. For τ ∈ pol(X ) with σ ⊂ τ
denote by τ the closed cone in W /W(σ) that is spanned by the image of τ −σ under q. We define
StarX (σ) as the tropical fan

StarX (σ) = {τ |σ ⊂ τ ∈ pol(X )}
where the weights are given by ω(τ) = ω(τ). We call StarX (σ) the star of X at σ and we denote
the associated tropical fans by StarX(σ).

For a point p ∈ X we define StarX(p) as the tropical variety associated to StarX ({p}) for some
polyhedral structure X of X with {p} ∈ pol(X ).

Proposition 1.2.8 (Locality of the intersection product, [Rau09]: 1.2.12)
Let X be a tropical variety in W and let ϕ1, . . . , ϕl be rational functions on X. Let σ ∈ pol(X )
for some ϕi-representative X , i ∈ [l]. Then the intersection product can be computed locally on
StarX(σ), i.e.

a) Starϕ1···ϕl·X(σ) = (ϕ1)σ · · · (ϕl)σ · StarX(σ)
b) If l = codim(σ), then

ωϕ1···ϕl·X(σ) = ω(ϕ1)σ···(ϕl)σ·StarX(σ)({0}).

Lemma 1.2.9 ([Rau09]: 1.2.9)
Let h1, . . . , hl be integer linear functions on W with l ≤ dim W = r and define the rational
functions ϕi = max{hi, 0} on W. Let H : W → Rl be the linear function that is given by
x 7→ (h1(x), . . . , hl(x)) and assume that H has full rank. Then ϕ1 · · ·ϕl ·W is equal to ker(H)
with weight indH = |Zl/H(Λ)|.

Definition 1.2.10 (Morphism of tropical varieties)
Let X,Y be abstract tropical varieties. A tropical morphism f : X → Y is a map

f : supp(X)→ supp(Y )

such that there exist representatives X = (|X|, {ϕi : UXi → WX
i }), Y = (|Y |, {ψj : UYj → WY

j })
such that all ψj ◦f ◦ϕ−1

i are morphisms of open tropical fans, see 1.1.11. If the maps ψj ◦f ◦ϕ−1
i are

general morphisms of open tropical fans, we call f a general tropical morphism. An isomorphism
of tropical varieties is a bijective morphism whose inverse is a tropical morphism, too, and which
respects the weight functions on X and Y .

Remark 1.2.11
The restriction of a morphism of tropical varieties f : X → Y to a subvariety is again a morphism.
This is not true for the restriction to an open subvariety: In this case the image f(σ) of a polyhedron
σ ∈ X , X a polyhedral structure on X, need not be closed in supp(Y ). The restriction of a general
tropical morphism to an open subvariety is again a general tropical morphism.

fσ1

σ2

τ1 = f(σ1)

τ2 = f(σ1)

Figure 4. Look at the tropical varieties X (left) and Y (right) above in R2 whose
weights are all one. The map which is given on U(σ1) by (x1, x2) 7→ (0, x2) and
on U(σ2) by (x1, x2) 7→ (x1, x1 +x2) is a morphism which is not globally given by
an affine Z-linear map.
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Definition 1.2.12 (Pull-back, e.g. [Rau09]: 1.3.3)
Let f : X → Y be a general morphism of abstract tropical varieties and let ϕ be a rational function
on Y . We call the rational function f∗ϕ on X the pull-back of ϕ along f .

Construction 1.2.13 (Push-forward)
Let f : X → Y be a morphism of (abstract) tropical varieties. Choose representatives X of X and
Y such that f(σ) ∈ pol(Y) for all σ ∈ pol(X ). Define

pol(f∗X ) := {f(σ)|σ ∈ X is contained in a facet on which f is injective}

with weight function

ωf∗X (τ) =
∑
σ∈X :
f(σ)=τ

ωX (τ) · |Λ(τ) : fσ(Λ(σ))|

where fσ : W(σ)→W(τ) is the linear map induced by the restriction of f to σ. Put supp(f∗X ) =⋃
σ∈pol(f∗X ) σ.

Lemma 1.2.14 ([AR10]: 7.4)
Use the notation from the previous construction. Then the abstract polyhedral complex f∗X is a
polyhedral structure on a subvariety of Y . We denote this subvariety by f∗X.

Lemma 1.2.15 ([Rau09]: 1.3.8 and 1.3.9)
Let f : X → Y , f ′ : X ′ → Y ′ and g : Y → Z be morphisms of abstract tropical varieties. Then it
holds for all subvarieties W of X and W ′ of X ′

a) (f × f ′)∗(W ×W ′) = f∗(W )× f ′∗(W ′) and
b) (g ◦ f)∗W = g∗(f∗W ).

Theorem 1.2.16 (Projection formula, [AR10]: 7.7)
Let f : X → Y be a morphism of (abstract) tropical varieties and let ϕ be a rational function on
Y . Then it holds for all C ∈ Z(X) that

ϕ · (f∗C) = f∗(f
∗ϕ · C).

Intersecting tropical varieties. We will describe properties of an intersection product of
tropical varieties from [FR12] that is compatible with the intersection of a tropical variety with a
rational function. This is not possible for all varieties, only on those that locally look like matroidal
fans.

Definition 1.2.17 (Matroid variety, matroidal fan)
Let M = (E,B) be a loop-free matroid with ground set E = [m] of rank d. To a chain of flats
F = (∅ ( F1 ( · · · ( Fp−1 ( Fp = E) we associate the cone

〈F〉 :=

{
p∑
i=1

λi · vFi : λ1, . . . , λp−1 ≥ 0, λp ∈ R

}
,

where vF = −
∑
i∈F ei for F ⊂ E. Define pol(B(M)) as the set of cones in Rm that correspond

to a chain of flats of M and define the weight function ω to be one on every facet. Then B(M) =
(pol(B(M), ω) is a tropical fan in Rm with lineality space (at least) L = R·e0. Denote by B(M) the
corresponding tropical variety and by B(M)/L the tropical variety with lineality space L modded
out. A tropical variety that is of the form B(M) or B(M)/L for some matroid M is called matroid
variety. B(M) and B(M)/L are called matroidal fans.

Remark 1.2.18
Another definition of the support of B(M) is the following. For p ∈ Rm define the p-weight of
a basis B ⊂ M as

∑
i∈B pi. Let Mp be the matroid that is given by the p-minimal bases of M .

Using this notation, the support of B(M) is given by the points p ∈ Rm such that the matroid Mp

is still loop-free.
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Example 1.2.19
The tropical linear spaces Lmk are matroid varieties that correspond to the uniform matroids
Uk+1,m+1 (that have rank k + 1, m + 1 elements and all subsets of the ground set with k + 1
elements are bases) modulo lineality space.

Lemma 1.2.20 ([FS05]: 4.2)
Let X be a matroidal fan and let σ ∈ X be a cone. Then the star StarX(σ) is a matroidal fan,
too.

Definition 1.2.21 (Smooth variety, [FR12]: 6.1)
A smooth variety is an abstract tropical variety X that has a representative (supp(X), {ϕi : Ui →
supp(Fi)}) such that all Fi are open matroidal fans.

Let C,D be subvarieties of a smooth variety X. In [FR12], an intersection product C ·D ∈ Z(X)
on X is constructed. It has the following properties:

Lemma 1.2.22 (Properties of the intersection product, [FR12]: 6.4)
For all subcycles C,D,E of a smooth variety X and all rational functions ϕ1, . . . , ϕs on X the
following holds:

a) If X is a matroid variety and if C and D are fans, then C ·D is a fan, too.
b) supp(C ·D) ⊂ supp(C) ∩ supp(D).
c) (ϕ1 · C) ·D = ϕ1 · (C ·D).
d) C ·X = C.
e) C ·D = D · C.
f) (C ·D) · E = C · (D · E).
g) (C +D) · E = C · E +D · E.
h) If C = ϕ1 · · ·ϕs ·X, then C ·D = ϕ1 · · ·ϕs ·D.
i) (A1 ×A2) · (B1 ×B2) = (A1 ·B2)× (A2 ·B2) if A1, B1 and A2, B2 are subvarieties of two

smooth varieties X1 and X2, respectively.

Remark 1.2.23 ([FR12]: 6.3 and 6.4)
The intersection product can be calculated locally on StarX(p): Let C,D be subvarieties of a
smooth variety X and let p ∈ supp(X). Then the following holds on StarX((p):

StarC·D(p) = StarC(p) · StarD(p)

Definition 1.2.24 (Pull-back of varieties, [FR12]: 8.1)
Let f : X → Y be a morphism of smooth tropical varieties and let C be a subvariety of Y . Then
the pull-back of C along f is defined as

f∗C := π∗(Γf · (X × C)),

where π : X×Y → X is the projection to the first factor and Γf is the graph of f , i.e. Γf := γf ∗(X)
with γf : X → X × Y , x 7→ (x, f(x)).

Lemma 1.2.25 (Properties of the pull-back, projection formula [FR12]: 8.2 and 8.3)
Let f : X → Y , g : Y → Z be morphisms of smooth tropical varieties. Moreover, let C and C ′ be
subcycles of Y , D of X and E of Z. Then the following holds:

a) f∗(C + C ′) = f∗C + f∗C ′.
b) supp(f∗C) ⊂ f−1(supp(C)).
c) The projection formula C · f∗D = f∗(f

∗C ·D) is valid.
d) f∗(C · C ′) = f∗(C) · f∗(C ′).
e) (g ◦ f)∗E = f∗(g∗E).
f) f∗C = f∗ϕ1 · · · f∗ϕk ·X if ϕ1, . . . , ϕk are rational functions on Y with C = ϕ1 · · ·ϕk · Y .

Lemma 1.2.26
Let X be a smooth variety and let A, B be subvarieties of X. Denote by d the diagonal morphism
d : X → X ×X,x 7→ (x, x). Then it holds d∗(A×B) = A ·B.
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Proof. Let π : X ×X → X be the projection onto the first factor. Since d∗X is the diagonal
∆X in X ×X, we get using the projection formula

A ·B = π∗(∆M · (A×B)) = π∗((A×B) · d∗X)

= π∗(d∗(d
∗(A×B) ·X)) = (π ◦ d)∗(d

∗(A×B) ·X)

= id∗(d
∗(A×B)) = d∗(A×B)

�

Lemma 1.2.27
Let M,M1, . . . ,Mn be smooth tropical varieties and for i ∈ [n] let fi : M → Mi be morphisms.
For subvarieties Ai of Mi it holds

(f1, . . . , fn)∗(

n∏
i=1

Ai) ·M =

n∏
i=1

f∗i Ai ·M.

Proof. It suffices to show the claim for n = 2. Let d : M →M ×M , x 7→ (x, x) be again the
diagonal morphism. We get (f1, f2) = (f1× f2) ◦ d, and it follows with lemmata 1.2.25, 1.2.26 and
1.2.15

(f1, f2)∗(A1 ×A2) ·M = ((f1 × f2) ◦ d)∗(A1 ×A2) ·M
= d∗(f1 × f2)∗(A1 ×A2) ·M
= d∗(f∗1 (A1)× f∗2 (A2)) ·M
= f∗1 (A1) · f∗2 (A2) ·M

�

Lemma 1.2.28 (Pull-back of subvarieties of matroid varieties)
Let f : F → X be a general tropical morphism where X is a matroid variety and F an arbitrary
tropical fan. Let ϕ1, . . . , ϕk and ψ1, . . . , ψk be rational functions on X with

C = ϕ1 · · ·ϕk ·M = ψ1 · · ·ψk ·M.

Assume that there exists a matroid variety Y such that F is a subvariety of Y and a morphism
f̃ : Y → X with f̃ |F = f . Then it holds

f∗ϕ1 · · · f∗ϕk · F = f∗ψ1 · · · f∗ψk · F and supp(f∗ϕ1 · · · f∗ϕk · F ) ⊂ f−1(supp(C)).

Proof.

f∗ϕ1 · · · f∗ϕk · F = f̃∗ψ1 · · · f̃∗ψk · F · Y
= f̃∗C · F · Y

The second statement follows from lemma 1.2.25. �

Corollary 1.2.29
Let f : X → Rm be a general tropical morphism and let C = ϕ1 · · ·ϕk ·Rm = ψ1 · · ·ψk ·Rm. Then
the following is true:

f∗ϕ1 · · · f∗ϕk ·X = f∗ψ1 · · · f∗ψk ·X and supp(f∗ϕ1 · · · f∗ϕk · F ) ⊂ f−1(supp(C))

Proof. Since intersection products can be calculated locally on stars, we only have to consider
the case that X is a tropical fan in Rl and f the restriction of a Z-linear map. We can hence extend
f to a morphism f̃ : Rl → Rm with f̃ |X = f . Therefore the prerequisites of the previous lemma
are fulfilled and the claim follows. �

Definition 1.2.30
Let f : X → Rm be a general morphism and let C = ϕ1 · · ·ϕk · Rm. Using the previous lemma,
the following definition is well-defined:

f∗C := f∗ϕ1 · · · f∗ϕk ·X
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X0 × · · · ×Xl Rr × Rr

X0 ×Xl

X0

hl

(πl−1
0 × id)

fl × gl

πl0

π′

Figure 5. The maps hl and π′.

Lemma 1.2.31 ([Rau09], 2.3.10)
Let Σ be a complete unimodular fan in Rm and let B1, . . . , Bm be a basis of the group Z∗(Σ) of
Σ-directional varieties in Rm. Let X ∼

∑
i λiBi, Y ∼

∑
j µjBj be two Σ-directional cycles in Rm

with complementary dimension. Then

deg(Z · (X × Y )) = deg(X · Y ) =
∑
i,j

deg(X ·Bi)βij deg(Y ·Bj),

where (βij)ij denotes the inverse of α := (deg(Bi ·Bj))ij and deg(·) is set to zero if the dimension
of the argument is non-zero.

Lemma 1.2.32
Let l ∈ N and let X0, . . . , Xl be subvarieties of a matroidal fan and denote by Z the diagonal in
Rm × Rm. Denote by

πj+1
k : X0 × · · · ×Xj → Xk

the projection on the k-th factor, 0 ≤ k ≤ j ≤ l. Moreover, for k ∈ [l] let fk : X0 → Rm,
gk : Xk → Rm be morphisms and define

hk := (fk × gk) ◦ (πl0 × πlk) : X0 × · · · ×Xl → Rm × Rm.

Then the following formula is valid:

(πl0)∗

∏
k∈[l]

h∗k(Z)

 · (X0 × · · · ×Xl)

 =
∏
k∈[l]

f∗k ((gk)∗Xk) ·X0.

Proof. According to 1.3.27 the pull-back f∗k ((gk)∗Xk) and the intersection product∏
k∈[l]

f∗k ((gk)∗Xk) ·X0

are defined.

For l = 0 the claim is obviously true. Now, let l ∈ N and define

h′k := (fk × gk) ◦ (πl0 × πlk) : X0 × · · · ×Xl−1 → Rr × Rr

for k ∈ [l − 1] and

h′l := fl × gl : X0 ×Xl → Rm × Rm.
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Note that hl = h′l ◦ (πl0 × id) and let π′ : X0 ×Xl → X0 be the projection on the first factor. By
induction we conclude

(πl+1
0 )∗

∏
k∈[l]

h∗k(Z)

 (X0 × · · · ×Xl)


= (π′)∗(π

l
0 × id)∗

(hl)
∗(Z)

 ∏
k∈[l−1]

(h′k)∗(Z)

 ∏
k∈[l−1]

Xk

×Xl


p.f.
= (π′)∗

(h′l)
∗(Z) · (πl0 × id)∗

 ∏
k∈[l−1]

(h′k)∗(Z)

 ∏
k∈[l−1]

Xk

×Xl


induction
= (π′)∗

(h′l)
∗(Z) ·

 ∏
i∈[l−1]

f∗i ((gi)∗Xi)

×Xl


induction
=

∏
i∈[l]

f∗i ((gi)∗Xi) ·X0.

�

Rational equivalence.

Definition 1.2.33 (Rational equivalence, RX)
Let Z be a subvariety of the abstract tropical variety X. Define

RZ := {ϕ ∈ O(Z)|ϕ(σ) compact ∀σ ∈ pol(Z), σ ⊂ supp(Z∗)}.

We call Z rationally equivalent to zero if there exist a morphism f : Z ′ → Z and ϕ ∈ O(Z ′) with

f∗(ϕ · Z ′) = Z.

We call two subvarieties Z1, Z2 of X that have the same dimension rationally equivalent if Z1−Z2 ∈
Z(X) is rationally equivalent to zero.

Remark 1.2.34
This definition of rational equivalence differs slightly from the one given in [AR08]. There RZ
is defined as the set of bounded rational functions on Z. However, if we only consider tropical
varieties in W, whose polyhedra are closed subsets of W, the two definitions coincide. With the
definition from [AR08], all points in the open unit interval (an open tropical variety with weight
one for example) would be rationally equivalent to zero, which makes this definition inappropriate
for enumerative purposes. This is the reason why we changed the definition.

Remark 1.2.35
Note that the restriction ϕ|Y of ϕ ∈ RX to a subvariety Y of X is an element of RY . This is true
since we demand in the definition of a subvariety that supp(Y ) is a closed subset of supp(X).

Since intersection products are calculated locally, the following lemma is a consequence of [AR08]
Lemma 2, [FR12] 9.2 and [All09] 1.7.6.

Lemma 1.2.36
Let f : X ′ → X be a morphism of abstract tropical varieties. Assume that C ′ and C are subvariety
of X ′ and X, respectively, that are rationally equivalent to zero. Let ϕ be a rational function on
X. Then the following holds:

a) ϕ · C is rationally equivalent to zero.
b) Let X be a matroid variety and let D be another subvariety of X. Then C ·D ∈ Z(X) is

also rationally equivalent to zero.
c) f∗ϕ ∈ RX′ if ϕ ∈ RX .
d) f∗(C

′) is rationally equivalent to zero.
e) f∗C is rationally equivalent to zero.
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f) Assume that C is zero-dimensional. Then deg(C) = 0. In particular, two zero-dimensional
varieties which are rationally equivalent have the same degree.

Lemma 1.2.37 (Translations of tropical varieties are rationally equivalent, [AR08]: Lemma 3)
Let C be a tropical variety in ΛR and let C(v) denote the translation of C by a vector v ∈ ΛR.
Then C(v) is rationally equivalent to C.

Definition 1.2.38 (Recession cone Re(σ))
Let (X , ωX ) be a weighted polyhedral structure on a d-dimensional tropical variety X in ΛR and
let σ ∈ X. Define the recession cone Re(σ) ⊂ Rm of σ as the cone that consists of all v ∈ Rm such
that there exists p ∈ σ with p+ R≥0 · v ⊂ σ. If Re(σ) is d-dimensional, we define its weights as

ω(Re(σ)) =
∑
σ′∈X :

Re(σ)⊂Re(σ′)

ωX (σ′)

.

Lemma 1.2.39 ([AR08]: Theorem 7)
LetX be a tropical variety. Then there exists a representative X ofX such that {Re(σ)|σ ∈ pol(X )}
is a tropical fan, denoted by Re(X), called the recession fan of X, and does not depend on the
chosen representative.

Theorem 1.2.40 ([AR08]: Theorem 10)
Let X be a tropical variety in a real vector space ΛR. Then Re(X) is rationally equivalent to
X. Re(X) is the only tropical variety which X is rationally equivalent to and whose polyhedral
structures are tropical fans.

Remark 1.2.41 (Recession fan of
∏
i∈[r] max{ϕi, ai} ·X)

Let X be a tropical fan in ΛR, let ϕi : ΛR → R be linear, i ∈ [r] and let a ∈ Rr. Then the recession
fan of

∏
i∈[r] max{ϕi, ai} ·X is ∏

i∈[r]

max{ϕi, 0} ·X.

This is true because
∏
i∈[r] max{ϕi, ai} ·X and

∏
i∈[r] max{ϕi, 0} ·X are rationally equivalent and

because
∏
i∈[r] max{ϕi, 0} ·X is a tropical fan.
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1.3. Tropical curves and moduli spaces of rational tropical curves

We recall some general facts about tropical curves and moduli spaces of rational tropical curves,
see for example [GKM09] and [Rau09].

Smooth abstract curves. The linear spaces Lm1 will be the local models of smooth curves.

Definition 1.3.1 (Smooth curves, vertex, edge, leaf, flag)
A (smooth) abstract curve C is a one-dimensional connected closed tropical variety which is locally
isomorphic to Lr1 for suitable r ∈ N. The genus of C is defined as the first Betti number of supp(C).

We denote by V(C) the set of points in supp(C) that are contained in at least three 1-cells of
every representative of C. The elements of V(C) are called vertices of C. The number of 1-cells
containing v ∈ V(C) is called valence of v. We call a connected subset E ⊂ supp(C) an edge of
C if the following property is fulfilled: If E ( C has a boundary point and if there exists a vertex
v ∈ V(C) with v ∈ E, then v is a boundary point of E. By E(C) we denote the set of edges of C.
If it is clear which curve we refer to, we write V and E instead of V(C) and E(C). Edges which
have only one boundary point are called leaves.

A pair (p,E) consisting of p ∈ supp(C) and an edge E ∈ E(C) such that p is a boundary point of
E is called a flag of C. A pair (p,E′) such that E′ is a connected subset (which is not a point) of
an edge E ∈ E(C), such that p′ is a boundary point of E and such that the other boundary point
of E (if it exists) is a vertex is called a flag segment of C. We denote the set of flag segments of C
by FS(C) and the set of flags of C by F(C).

Let I be a finite set with #I ≥ 3. An (I,G)-marked abstract curve is a triple (C, I,G) where
C is a smooth abstract curve with #I leaves that we label by the elements of I and where G :
supp(C) → N is a map that fulfills #{p ∈ supp(C)|G(p) > 0} < ∞. If a leaf is labeled by i ∈ I,
we denote it by xi. We denote (C, I,G) also by (C, I) or by C and call it I-marked abstract curve
if no confusion can occur.

For all p ∈ supp(C), the genus of p is defined as G(p) ∈ N. If g′ is the genus of C, the genus g of
(C, I,G) is defined as

g := g′ +
∑

p∈supp(C)

G(p).

Let L ⊂ supp(C) be the set of points that are contained in a circuit of C. We define the loop of
C by

CL := L ∪ {p ∈ supp(C)|G(p) > 0} ⊂ supp(C).

An (I,G)-marked curve is called rational if its genus is zero and elliptic if its genus (as (I,G)-
marked curve) is one. (If (C, I,G) is an elliptic curve, either C has genus one and C has only
points of genus zero or C is rational and supp(C) contains exactly one point with a non-zero genus
that is one.)

Remark 1.3.2
Note that if an abstract tropical curve C is not L1

1 and if all circuits of supp(C) contain more
than one edge, there exists a polyhedral structure C on C such that V(C) = pol(C)(0) and E(C) =
pol(C)(1).

Definition 1.3.3 (Length of an edge)
Let C be an (I,G)-marked curve and let E ∈ E(C). Choose a polyhedral structure C on C in
which E is a union of pairwise disjoint 1-cells E1, . . . , En ⊂ supp(C). Then polyhedral charts
σi : Ei → R are part of the data of C, i ∈ [n]. The images σi(Ei) are intervals Ii ⊂ R. We define
the length of E as the sum of the lengths of the intervals Ii, i ∈ [n], and denote it by Length(E).
(This is well-defined because the composition of polyhedral charts and tropical isomorphisms are
affine Z-linear and invertible, see 1.1.3, 1.1.11 and 1.2.10.)

Construction 1.3.4 (Combinatorial morphism, abstract combinatorial type)
Let (C, I,GC), (D, I,GD) be abstract marked curves. A combinatorial morphism f : (C, I,GC)→
(D, I,GD) is a homeomorphism f : supp(C)→ supp(D)
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a) that respects the labeling of the leaves (i.e. a leaf of C with label i ∈ I is mapped to the
leaf of D that has the same label i) and

b) that respects the genera of the points (i.e. the genus of each p ∈ supp(C) is equal to the
genus of f(p)).

The abstract combinatorial type ΓC of C is defined as the set of I-marked curves D such that
there exists an abstract combinatorial morphism f : C → D. In this case we write C ∼ D. It is
easy to check that ∼ is an equivalence relation on the set of I-marked curves.

Remark 1.3.5
Let C,D be I-marked curves. Note that an abstract combinatorial morphism f : C → D maps
edges onto edges and vertices onto vertices.

Construction 1.3.6 (ECI1 , edge induces partition of I)
Let E be a bounded edge of an I-marked curve C that is outside the loop. Then supp(C) \ E◦
has two connected components. They induce a partition I = I1∪̇I2 and we denote the edge by
ECI1 = ECI2 .

Construction 1.3.7 (Edge contractions)
Let E ∈ E(C) for an (I,G)-marked curve C and assume that E is no leaf. The topological space
supp(C)/E (i.e. we contract the edge E) inherits from C both the structure of a polyhedral complex
and of an I-marked curve, that we denote by C/E, in the following way:

If p, q ∈ E are the boundary points of E that have valence val(p) and val(q), locally around
E ∈ supp(C)/E, supp(C)/E is then isomorphic to Lval(p)+val(q)−2 if p 6= q and to Lval(p)−2 if
p = q. The labeling of the leaves of C/E is chosen such that it is respected by the projection map
π : supp(C) → supp(C)/E. Moreover, π respects the edge lengths. The genus of p ∈ supp(C)/E
is given by the sum over the genera of the points in π−1{p} plus the first Betti number of π−1{p}.
See figure 6 for two examples.

x1

x2

E

x3

x4
π

x1

x2

x3

x4

x1

x2

E

π

x1

x2

1

Figure 6. Example of the contraction of an edge E. On the left, all points have
genus zero. On the right, in the upper curve all points have genus zero, too. Then
the edge E is contracted and turned into a point of genus one in C/E below.

Remark 1.3.8
Note that the contraction of different edges of an I-marked curve C can lead to the same curve,
see figure 7 below for an example.

Definition 1.3.9 (Specialization, specialization of a combinatorial type)
Let C be an I-marked curve. An I-marked curve D is called a specialization of C if D is obtained
from C by a sequence of edge contractions. We write D ≤ C. A combinatorial type ΓD is called a
specialization of a combinatorial type ΓC if there exist D ∈ ΓD and C ∈ ΓC such that D ≤ C. In
this case we write ΓD ≤ ΓC .

Lemma 1.3.10
≤ is a partial order on the set of combinatorial types of I-marked abstract curves.
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x1

E1

x2

E3

x3

E2

x1

E1

x2

E3

x3

E2

πE1,E2
πE2,E3

x1 x2 x3

E3 resp. E1

Figure 7. On the left, the edges E1 and E2 are contracted by πE1,E2
. On the

right, the edges E2 and E3 are contracted by πE2,E3
. The arising curve is the

same if E1 and E3 have the same length.

Proof. ≤ is reflexive because the identity map id : supp(C) → supp(C) is a combinatorial
morphism for all I-marked curves C. It is transitive because concatenations of combinatorial
morphisms are again combinatorial morphisms. It remains to show antisymmetry: Assume that
ΓC , ΓD are combinatorial types which fulfill ΓC ≤ ΓD and ΓC ≤ ΓD. That implies that there exist
curves C ∈ ΓC , D ∈ ΓD and specializations D′ of D, C ′ of C with C ∼ D′ and D ∼ C ′. D′ and
C ′ are obtained from D and C by a sequence of edge contractions. Since the number of edges is
finite, we conclude that in both cases no edges are contracted, C ∼ D and ΓC = ΓD, see also the
diagram below. �

supp(C ′) supp(D)

supp(C) supp(D′)

∼=

πC′ πD′

∼=

Figure 8. πC′ and πD′ are the projection maps that correspond to the sequence
of edge contractions in the previous lemma.

Lemma 1.3.11
Let C,D be (I,G1), (I,G2)-marked curves of genus one and let f1, f2 : C → D be combinatorial
morphisms. If there exists an edge E ∈ E(C) with f1(E) 6= f2(E) then f1(E) ∪ f2(E) = DL, i.e.
f1(E) and f2(E) are the only edges in the loop of D. In particular, f1(v) = f2(v) for all vertices
v ∈ V(C).

Proof. If E is an edge outside the loop of C, f1(E) and f2(E) are edges outside the loop of
D. The set supp(C) \E◦ has two connected components that give a partition of I = I1∪̇I2. Since
combinatorial morphisms respect the labeling of the leaves, supp(D)\f1(E◦) and supp(D)\f2(E◦)
must induce the same partition I = I1∪̇I2, which implies f1(E) = f2(E).

If E is an edge inside the loop of C, f1(E) and f2(E) are also edges inside the loop of D. If
f1(E) 6= f2(E), the loop of C and D contains at least two edges. So let E 6= E′ ∈ E(C) be
another edge in the loop of C. The set supp(C) \ (E◦ ∪ (E′)◦) has two connected components that
give a partition of I = I1∪̇I2. Again, this partition is respected by combinatorial morphisms and
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supp(D)\(f1(E)◦∪f1(E′)◦) and supp(D)\(f1(E)◦∪f1(E′)◦) induce the same partition I = I1∪̇I2.
This implies that {f1(E), f1(E′)} = {f2(E), f2(E′)} for all edges E′ 6= E that are inside the loop
of C, i.e. f2(E′) = f1(E) for all edges E′ 6= E that are inside the loop. Hence, f(E) and f1(E′)
are the only edges in the loop of D. �

Definition 1.3.12 (Morphism of (I,G)-marked curves)
A morphism of marked curves (C, I,GC), (D, I,GD) is a morphism f : C → D that respects the
labeling of the leaves (i.e. a leaf with label i ∈ I of C is mapped to the leaf with label i of D) and
the genera of the points (i.e. the genus of f(p) equals the genus of p for all p ∈ supp(C)).

Corollary 1.3.13
Let C be an (I,G)-marked curve. If C has genus one and if there exists an automorphism f : C → C
that is not the identity, then one of the following statements is true:

a) The loop of C consist of only one edge.
b) The loop of C consists of precisely two edges E1, E2 and f(E1) = E2, f(E2) = E1.

If C is rational, C has no non-trivial automorphisms.

In order to deal with enumerative questions concerning tropical curves we will study a space that
parametrizes I-marked rational curves. To construct such a space we make use of tree metrics.
The following definitions and statements can be found for example in [GKM09]:

A metric on the set I = {i1, . . . , in} with #I = n can be identified with a point in R(n2) such that
the coordinate {i, j} describes the distance between i ∈ I and j ∈ I. The space of metrics coming

from I-marked metric trees defines a fan F in R(n2) whose cones are in bijection with combinatorial
types of trees. The lineality space of this fan is given by metrics which come from trees without
inner edges where all leaves are incident to the single n-valent vertex, so-called star metrics. This
space of star metrics can be described by the image of

ΦI : Rn → R(n2)

(ai1 , . . . , ain) 7→ (aik + ail)k,l.

Dividing out the image im(Φn) from the fan F , which parametrizes tree metrics, we obtain a
tropical fan:

Definition 1.3.14 (The moduli space of abstract curves)
Let I be a set with #I = n. The moduli space of rational I-marked abstract curves M0,I is

the fan in R(n2)/ im(Φn) that parametrizes metric trees with bounded edges of positive length
and unbounded edges of infinite length. The lattice is generated by the metric trees which have
precisely one bounded edge. For a precise definition, see [GKM09], section 3.

In [Rau09], proposition 2.1.21, it is shown that the spaceM0,I not only parametrizes metric trees
but also abstract rational I-marked curves. Therefore, we often speak of rational abstract curves
instead of metric trees without different meaning.

The cones of M0,I are in bijection with combinatorial types of I-marked rational curves. The
dimension of a cone equals the number of bounded edges in the corresponding combinatorial type.
A point in the interior of a facet corresponds to a 3-valent metric tree with (n− 3) bounded edges.
Hence, the dimension of M0,I is (n − 3). All facets are equipped with weight 1. Using these
weights, M0,I satisfies the balancing condition and is a tropical fan.

We also denote the associated tropical variety by M0,I .

Definition 1.3.15 (vJ ∈M0,I)

The rays ofM0,I with #I = n are generated by the metric trees vJ = vI\J ∈ R(n2)/Φn(Rn), J ⊂ I,
with (vJ)i,j = 0 if i, j ∈ J or i, j /∈ J and (vJ)i,j = 1 else. Hence, the partitions {J, I \J} of I with
I 6= J 6= ∅ give a global labeling of the edges of curves in M0,I . Here is an illustration:
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labels in J labels in I \ J

edge length 1

vJ = ∈M0,I

Lemma 1.3.16
ConsiderM0,I and let J ⊂ I with #J > 1 and #(I \ J) > 1. Define a ∈ R#J with ak = #J − 2 if
k ∈ J and ak = 0 if k /∈ J . Then it holds∑

A⊂J,
#A=2

vA = vJ + ΦI(a).

Proof. Let k, l ∈ J with k 6= l. There exist precisely #J − 2 pairwise different A ⊂ J with
#A = 2, k ∈ A and l /∈ A. Hence, the distance of k and l in

∑
vA, where the sum runs over all

A ⊂ J with #A = 2, is 2 · (#J − 2). Moreover, for k ∈ J and l /∈ J , there exist precisely #J − 1
different A ⊂ J with #A = 2 and k ∈ A. Thus, the distance of k ∈ J and any l /∈ J in

∑
vA is

#J − 1. Finally, the distance of k, l /∈ J in
∑
vA is zero. Combining these statements we get that∑

vA is defined by the metric tree (see picture below)

• with one bounded edge of length one
• such that all leaves k ∈ J are incident to the same vertex and all have length #J − 1 and
• such that all leaves l /∈ J are incident to the other vertex and all have length zero.

This proves the claim.

labels in J labels in I \ J

edge length #J − 2 edge length 0

edge length 1

Figure 9. Metric tree defining
∑
vA.

�

Parametrized curves.

Definition 1.3.17 (Parametrized curve of degree ∆, marked point, genus, regular)

a) A labeled degree is a map v : ∆→ Zm \ {0} such that ∆ is a finite set and such that the
image vectors of the map sum up to zero, i.e.

∑
i∈∆ v(i) = 0 ∈ Zm. We denote the degree

by ∆ if no confusion can occur.
b) Let C be an abstract curve, p ∈ supp(C), σp : UC(p) → Rval(p)−1 a fan chart at p and

let f : C → Rm be a morphism. We define the multiplicity multf (p) of f at p as the
index of the map of lattices that is induced by f ◦ σ−1

p . (multf (p) does not depend on the

chosen fan chart since the concatenation of σp with the inverse of a different fan chart τ−1
p

is Z-linear invertible.)
c) Let ∆, I be finite sets with ∆ ∩ I = ∅, #I ≥ 1 and #(∆ ∪ I) > 3. Let (C,∆∪̇I,G) be a

marked curve and let h : C → Rm be a morphism. We call ((C,∆∪̇I,G), h) a parametrized
(I,G)-marked curve of degree v : ∆→ Zm \ {0} if
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• for every j ∈ ∆ the image h(xj) ⊂ Rm of the leaf xj is an unbounded ray that has
direction v(j) ∈ Zm \ {0},
• for every i ∈ I the leaf xi is mapped to a point and
• the multiplicity of h at p ∈ supp(C) is greater than the genus of p (this condi-

tion is necessery in chapter 3 to make the moduli space of well-spaced curves pure-
dimensional).

A leaf that is mapped to a point by h is called a marked point of ((C,∆∪̇I,G), h). We
just write (C, h) instead of (C,∆∪̇I,G, h) if no confusion can occur.

d) A morphism (C, h)→ (D, g) is a morphism of the abstract curves f : C → D that fulfills
h = g ◦ f .

e) The genus of a parametrized I-marked curve ((C,∆∪̇I,G), h) of degree ∆ is defined as
the genus of the underlying (∆∪̇I)-marked curve. If G(p) = 0 for all p ∈ supp(C), we call
(C, h) regular; if there exists p ∈ supp(C) with G(p) > 0, we call (C, h) non-regular.

f) If (C, h) is an (I,G)-marked curve of degree v(∆) with I = [n], we also call it (n,G)-
marked.

Construction 1.3.18 ((Weighted) direction vector, ω(E), ω(p,E))
Let (C, h) be an I-marked parametrized curve. The direction vector of a flag segment (p,E) ∈
FS(C) is the integer primitive vector v(C,h)(p,E) ∈ Zm \ {0} such that

h(E) ⊂ h(p) + v(p,E) · R≥0.

v(C,h) is a function on the set of flags of (C, h). We write vC or v instead of v(C,h) if no confusion
can occur. Let ϕE : E → R be a cone chart in a polyhedral structure on C. Then we define

ω(C,h)(E) = ω(E)

as the index of the map of lattices corresponding to h ·ϕE−1, and we set ω(p,E) = ω(E). We call

vω(C,h)(p,E) = ω(C,h)(E) · v(C,h)(p,E)

the weighted direction vector of (p,E) ∈ FS(C) and denote it by vω(p,E) if no confusion can
occur.

Definition 1.3.19 (Combinatorial type α = (Γα, vα), E(α), V(α), F(α), P(α))
Let Γ be the combinatorial type of an abstract (I,G)-marked curve C and let h : C → Rm be a
morphism. For E ∈ E(C) we define

[E] := {f(E)|f : C → D is a combinatorial morphism of marked curves}.

Define [v] for v ∈ V(C) accordingly and set V(Γ) = {[v]|v ∈ V(C)}, E(Γ) = {[E]|E ∈ E(C)} and
F(Γ) := {([p], [E])|(p,E) ∈ F(C)}.
Let v̄ : F(Γ)→ Rm be a function. Then we call (Γ, v̄) a combinatorial type of parametrized (I,G)-
marked curves. The combinatorial type of (C, h) is defined as α = (Γ, vω) with vω([(p,E)]) =
ω(E) · v(C,h)(p,E) for all (p,E) ∈ F(C). Note that (C, h) and (D, g) have the same combinatorial
type if and only if there exists a combinatorial morphism f : C → D that fulfills

ω(C,h)(E) · v(C,h)(p,E) = ω(D,g)(D) · v(D,g)(f(p), f(E))

for all (p,E) ∈ FS(C).

We define V(α), E(α) and F(α) as the corresponding sets for Γ, and we just write V, E and F if
no confusion can occur.

We define P(α) as the set of curves that have combinatorial type α.

Remark 1.3.20
Let C be an elliptic marked curve which has only two edges E1, E2 ⊂ CL in the loop that have
the same weight. Then there exists an automorphism f : C → C with f(E1) = E2 and hence only
one edge [E1] = [E2] in the loop of the combinatorial type ΓC of C.
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Definition 1.3.21 (Specialization, specialization of a combinatorial type, P(α))
Let (C, h) be an parametrized I-marked curve. A parametrized I-marked curve (D, g) is called
a specialization of (C, h) if D is a specialization of C and if the projection map π : C → D
fulfills vC(p,E) = vD(π(p), π(E)) for all flags (p,E) ∈ F(C) such that π(E) ∈ E(D). We write
(D, g) ≤ (C, h) in this case.

A combinatorial type α is called a specialization of a combinatorial type β if there exist (D, g) ∈ α
and (C, h) ∈ β such that (D, g) ≤ (C, h). In this case we write α ≤ β. We denote the set of curves

whose combinatorial type is a specialization of α by P(α).

If α ≤ β, there exists a surjective map on the vertices πβα : V(β)→ V(α) that maps a vertex of β
to the corresponding vertex in α.

Lemma 1.3.22
≤ is a partial order on the set of combinatorial types of I-marked parametrized curves of degree
∆. (Hence, we can speak of maximal combinatorial types of parametrized curves.)

Proof. The statement follows from the respective statement about abstract curves, see 1.3.10.
�

For dealing with enumerative questions, we are interested in a variety parametrizing rational
parametrized curves of a given degree.

Definition 1.3.23 (M0,I(∆,Rm), W(α))
We defineM0,I(Rm,∆) to be the space that parametrizes the set of rational I-marked parametrized
curves of degree ∆ in Rm. The construction of this space as tropical variety can be found in
[GKM09], section 4. Having fixed one root vertex xi with label i ∈ I we identify M0,I(∆,Rm)
with M0,I∪̇∆ × Rm, where the first factor parametrizes the I-marked abstract curve C and the
second factor contains the coordinates of h(xi) ∈ Rr. In remark 1.3.24, we explain why C and
h(xi) are sufficient to encode a parametrized rational curve (C, h) ∈M0,I(∆,Rm).

If α is a combinatorial type in M0,1(∆,Rm), we denote by M0(α) the set of curves that have
combinatorial type α. For shortening notation, we set

W(α) = W(M0(α))

(where the latter is defined as the smallest linear space containing the polyhedron M0(α), see 1.1.2)
and

uβ/α = u
M0(β)/M0(α)

(where α ≤ β is a maximal combinatorial type, dim W(β)/W(α) = 1 and u
M0(β)/M0(α)

is the

normal vector, see 1.1.6).

Remark 1.3.24
Let C ∈ M0,I , P ∈ Rm and let v : ∆ → Rm be a labeled degree. Then there exists exactly
one rational curve (C, h) ∈ M0,I(∆,Rm) such that the position of its root vertex xi is given by
h(xi) = P . We explain why this is true:

Let v ∈ V and assume that h(v) is known and that v ∈ E for some bounded E ∈ E(C). Since C is
rational, supp(C) \E◦ consists of exactly two connected components C1, C2 6= ∅. These connected
components induce a partition I1∪̇I2 = I of the set of labels I. By the balancing condition, we
conclude that the direction vector v(v,E) is given by

v(v,E) = −
∑
i∈I1

v(i) =
∑
j∈I2

v(j) ∈ Rr.

There exists v 6= v′ ∈ E ∩V(C) and it holds

h(v′) = h(v) + ω(E) · Length(E) · v(v,E).

Since supp(C) is connected, we can reconstruct h(v) forall v ∈ V(C) and hence h : C → R.
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Remark 1.3.25 (The curves vJ)
In definition 1.3.15, we defined the curves vJ ∈ M0,I for a subset J ⊂ I which have only one
edge. In the case of parametrized curves in M0,I(∆,Rm), we can similarly define curves viJ for
J ⊂ I ∪∆ and i ∈ I by choosing the position of a root vertex xi to be 0 ∈ Rm, i.e. viJ = (vJ , 0) ∈
M0,I∪∆ ×Rm =M0,I(∆,Rm). In the situations in which the position of the root vertex does not
play a role we leave out the choice of the root vertex i ∈ I and just write vJ . In particular, lemma
1.3.16 is still valid in the case of parametrized curves.

Definition 1.3.26 (Evaluation maps and their pull-back)
We recall the construction of evaluation maps M0,I(∆,Rm) → Rm and M0,I(∆,Rm) → Rm−1

made in [GKM09], section 4.2, which encode the information where the unbounded ends of a
curve (C, h) ∈M0,I(∆,Rm) are mapped by h.

If xi is a leaf labeled by i ∈ I, it is contracted by h and mapped to a point. Hence, the map

evi :M0,I(∆,Rm) → Rm

(C, h) 7→ h(xi)

is well-defined. In [GKM09], proposition 4.8, it is shown that it is a tropical morphism.

If v : ∆ → Rm is a labeled degree and if the end xi is labeled by i ∈ ∆, the leaf xi ∈ C is
not contracted by the map h and we have to use Rm/〈v(i)〉 as codomain in order to obtain a
well-defined evaluation map

evi :M0,I(∆,Rm) → Rm/〈v(i)〉 ∼= Rm−1

(C, h) 7→ [h(P )], P ∈ xi arbitrary.

Using the same argument as in [GKM09], proposition 4.8, we see that also in this case evi is a
morphism.

Lemma 1.3.27 ([AK06]: chapter 4, [FR12]: 7.2 and 7.3)
The spacesM0,I andM0,I(∆,Rm) are matroid varieties. Therefore, we can do intersection theory
on them using the results stated in section 1.2.

Remark 1.3.28
There exists a proof [GZ] of the following statement:

Let v : ∆ → Rm be a Lmm-directional degree and let Ck be Lmm-directional varieties in Rm for
k = 1, . . . , l, e.g. translates of Lmk . Set I = {0, . . . , n}. Then the push-forward

(ev0)∗

n∏
i=1

ev∗i Ck · M0,I(∆,Rm)

is also Lmm-directional.



CHAPTER 2

Enumerative geometry of rational tropical curves in Rm

In this chapter, we study rational tropical curves in Rm. Given a family of incidence and tangency
conditions, which are tropical varieties in Rm and Rm−1, we establish a recursive formula which
allows us to count the number of rational tropical curves of a prescribed degree j : ∆ → Rm
that fulfill all these conditions, i.e. which intersect these tropical varieties. Each curve is counted
with an intersection-theoretic multiplicity calculated on the moduli space of parametrized rational
tropical curves of degree ∆ in Rm.

Our approach to the stated enumerative question is based on tropical intersection theory. It
is geared to the method applied in [Vak00] for counting rational algebraic curves of a given
degree d ∈ N in Pm fulfilling given incidence and tangency conditions to a hyperplane. Moreover,
we generalize ideas from [GM07b] applied to prove a tropical Caporaso-Harris-type formula for
counting rational tropical curves of degree d and genus g passing a general configuration of 3d+g−1
points in R2. Merging both approaches and using tropical intersection theory, we establish a
recursive formula for counting rational tropical curves in Rm that coincides with its algebraic
counterpart, see [Vak00]. A related result, which describes - using floor diagrams - the recursive
structure of the multiplicity of a rational curve fulfilling given incidence and tangency conditions,
is stated in [BM07] and proven in [BM11].

2.1. Setup

We will formulate the enumerative question studied in this chapter precisely. We restrict ourselves
to degrees of parameterized tropical curves in Rm, which have only standard directions and fulfill
another property stated in the definition below (see 1.3.17 for the definition of a degree). Moreover,
we prescribe that the considered incidence and tangency conditions (which are varieties in Rm and
Rm−1, respectively) have standard directions, i.e. their recession fan is Lmk or Lm−1

k for some
k ∈ [m − 1]. The numbers tr,e that appear in the following definition stand for the number of
tangency conditions of dimension e ∈ [m− 1] that have to be fulfilled by a leaf of the curve which
has direction −e1 and weight r ∈ N.

Remember that e1, . . . , em are the standard unit vectors in Rm and that e0 = −
∑m
i=1 ei.

Definition 2.1.1 ((Generalized) projective degree)
Let t := (tr,e)r,e∈N, tr,e ∈ N, be a vector such that tr,e = 0 for all e > m− 1. Set d(t) :=

∑
r,e rtr,e,

i.e. t determines d(t). Let Hm(t) : ∆m(t)→ Zm \ {0} be the tropical degree with

∆m(t) := {(r, e, j)|1 ≤ j ≤
∑
e

tr,e} ∪ [d(t)] ∪ {2 · d(t) + 1, . . . , (m+ 1) · d(t)}

and

Hm(t) : ∆m(t) → Rm−1

(r, e, j) 7→ −re1

1, . . . , d(t) 7→ −e0

2d(t) + 1, . . . , 3d(t) 7→ −e2

...
...

m · d(t) + 1, . . . , (m+ 1) · d(t) 7→ −em.

23
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We call a tropical degree such that there exists a vector t = (tr,e) which has the above requested
properties a generalized projective degree d(t) in Rm.

If tr,e = 0 for all r 6= 1, we call ∆m(t) the projective degree d(t) in Rm.

Remark 2.1.2
A parametrized curve of projective degree d(t) in Rm has precisely d(t) leaves with weight one
in each of the standard directions −e0, . . . ,−em. A parametrized curve of generalized projective
degree ∆m(t) resembles a curve of projective degree d(t). The only difference is that a curve of
generalized tropical degree ∆m(t) may have leaves in direction −e1 whose weight is larger than 1.
However, the sum over the weighted direction vectors of all these leaves still equals −d(t) · e1, due
to
∑
tr,e = d(t). In the remaining standard directions −e0, −e2, . . . , −em there are exactly d(t)

leaves with weight 1.

The additional parameter e appears in a label (r, e, j) ∈ ∆m(t) because later on we will demand
from curves of degree ∆m(t) that the end labeled by (r, e, j), which has weight r, passes the support
of a tropical variety Γjr,e of dimension e.

2

Figure 1. h(C) of a curve (C, h) of generalized projective degree 2 in R2. The
weight of the leaf of direction −e1 is two and the weight of the remaining edges is
one.

Let d,m ∈ N, let i := (ie)e∈N, ie ∈ N, be a vector such that ie = 0 for all e > m (i.e. we do not
impose incidence conditions of dimension greater than m) and let

I := {(e, j)|e ∈ N, 1 ≤ j ≤ ie}.
Let Hm(t) : ∆m(t) → Rm be the generalized projective degree corresponding to the vector t =
(tr,e).

Denote by εe, e ∈ N, the vector with (εe)e = 1 and (εe)f = 0 for all e 6= f ∈ N. Define εr,e,
r, e ∈ N, respectively.

We are going to introduce a subvariety of MI(∆m(t),Rm) parameterizing curves of generalized
projective degree d which fulfill given incidence and tangency conditions. The number of incidence
conditions of dimension e (which can be fulfilled by an arbitrary point of the curve) will be given
by ie ∈ N, the number of tangency conditions of dimension e which are fulfilled by the ends in
direction −e1 with weight r will be given by tr,e ∈ N.

Considering MI(∆m(t),Rm), we denote the evaluation map corresponding to the leaf labeled by
(r, e, j) ∈ ∆m(t) by

evje,r :MI(∆m(t),Rm)→ Rm/〈e1〉 = Rm−1.

We denote the evaluation map corresponding to the leaf labeled by (e, j) ∈ I by

evje :MI(∆m(t),Rm)→ Rm.

Given vectors i and t, let

a) Ω := (Ωje ⊂ Rm)e,1≤j≤ie be a family of tropical varieties in Rm such that each Ωje is a
translate of Lme for all e and all 1 ≤ j ≤ ie, in particular dim(Ωje) = e, and

b) Γ := (Γjr,e ⊂ Rm−1)e,r,1≤j≤tr,e be a family of tropical varieties in Rm−1 such that Γjr,e is a

translate of Lm−1
e for all e, r and 1 ≤ j ≤ tr,e, in particular dim(Γjr,e) = e.
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We call a set Ω that fulfills these properties a set of incidence conditions for i and we call a set Γ
that fulfills these conditions a set of tangency conditions for t.

Definition 2.1.3 (Xm(E))
Let i, t be vectors as above, Ω, Γ be sets of incidence and tangency conditions for i and t. We set
E := (t,Ω,Γ).

We define Xm(E) as the subvariety of MI(∆m(t),Rm) which is given by

Xm(E) :=

∏
e,j

(evje)
∗(Ωje)

 ·
∏
r,e,j

(evjr,e)
∗(Γjr,e)

 · MI(∆m(t),Rm).

If Xm(E) is zero-dimensional, we define

Nm(E) :=
deg(Xm(E))

(d(t)!)m

where the factor (d(t)!)m equals the number of possibilities to label the non-contracted leaves of
an I-marked rational curve of degree ∆m(t) which do not have direction −e1, i.e. the ends which
are not restricted by tangency or incidence conditions. Define Nm(E) to be zero if

dim(Xm(E)) 6= 0.

Remark 2.1.4
In order to compute Nm(E) = Nm(t,Ω,Γ) we can replace the varieties Ωje ∈ Ω and Γjr,e ∈ Γ
by rationally equivalent varieties without changing the number (see [FR12], remark 9.2). In
particular, we may translate the linear spaces without changing Nm(E) (see [Rau09], lemma
1.4.9).

Moreover, all tropical linear spaces whose recession fan is of the form Lme are rationally equivalent
to Lme , see [AR08], theorem 7. Although we assume in the following that all elements of Ω and
Γ are translates of some Lme , the recursive formula we will establish actually allows to count the
number of curves which fulfill incidence and tangency conditions that are varieties whose recession
fan is of the form Lme .

For determining the numbers Nm(E) it is hence sufficient to know the vectors i and t, which deter-
mine the tropical degree ∆m(t) and the number of linear spaces Ωje and Γjr,e that have dimension
e and that are rationally equivalent to Lme . Hence, for shortening and simplifying notation, we
denote in the following a set of data given by vectors i, t, which induce sets of incidence and
tangency conditions Ω and Γ up to translation, by F = (i, t). We define

Nm(F) = Nm(i, t) := Nm(t,Ω,Γ),

where Ω and Γ are arbitrary sets of tangency and incidence conditions for i and t.

Given E = (t,Ω,Γ), the dimension of Xm(E) is given by

dim(Xm(t,Ω,Γ))

= dim(MI(∆m(t),Rm))−
∑
e

(m− e)ie −
∑
r,e

(m− 1− e)tr,e

= (m+ 1)d+m− 3−
∑
e

(m− 1− e)ie −
∑
r,e

(m− 2 + r − e)tr,e.

The cycle Xm(t,Ω,Γ) is zero-dimensional and the numbers Nm(t,Ω,Γ) can only be non-zero if

(m+ 1)d+m− 3−
∑
e

(m− 1− e)ie −
∑
r,e

(m− 2 + r − e)tr,e = 0.

In order to describe the enumerative relevance of the numbers Nm(E), we state the following
lemma.
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Lemma 2.1.5 ([Rau09], Corollary 2.2.13)
Let X be a polyhedral complex and let fk : X → Rmk , k = 1, . . . , n, be maps which are affine
linear on the cells of X. Moreover, let Y1, . . . , Yk be polyhedral complexes in Rm. Then for general
translations Y ′k = Yk + vk, vk ∈ Rmk (i.e. vk can be chosen from a dense open subset of Rmk), it
holds that

a) Z :=
⋂
k f
−1
k (Y ′k) is pure-dimensional,

b) the codimension of Z in X equals the sum

codimX(Z) =
∑
k

codimRmk (Yk),

c) the interior of a facet of

Z :=
⋂
k

f−1
k (Y ′k)

is contained in the interior of a facet of X.

Remark 2.1.6 (Enumerative relevance of the numbers Nm(t,Ω,Γ))
Let us interpret the numbers Nm(t,Ω,Γ). Since

supp ev∗k(Y ) = supp
(
M0,I∪∆m(t) × Y

)
= ev−1

k (Y )

with respect to the anchor leaf xk, k ∈ I, for subvarieties Y a of Rm, using the previous lemma
2.1.5 and replacing all Ωje and Γjr,e by general translations, we conclude that

suppXm(t,Ω,Γ) =
⋂
e,j

(evje)
−1(Ωje)

⋂
r,e,j

(evjr,e)
−1(Γjr,e).

Hence, the points in the interior of a facet of Xm(t,Ω,Γ) correspond to curves

(C, h) ∈MI(∆m(t),Rm)

such that

a) each vertex v ∈ suppC is trivalent,
b) evje(C, h) ∈ Ωje and evir,e(C, h) ∈ Γir,e for all e,m, 1 ≤ j ≤ ie, 1 ≤ i ≤ tm,e,

where the facets are equipped with weights that arise from the intersection products as additional
structure. Consequently, if Xm(t,Ω,Γ) is zero-dimensional, Nm(t,Ω,Γ) counts (modulo labeling)
the number of curves

(C, h) ∈M0,I(∆m(t),Rm)

a) which are trivalent,
b) which intersect all spaces Ωje ∈ Ω and
c) whose leaf labeled by (r, e, j) ∈ ∆m(t) intersects Γjr,e ∈ Γ (considered as subspaces of

Rm/〈e1〉),

where each curve is counted with a weight that arises from the intersection product.

Remark 2.1.7
Note the analogy to the algebro-geometric scenario of counting rational curves in projective space.
In [Vak00], section 2.1, there are defined subschemes Xm(E) of the moduli space of stable maps
M0,

∑
tr,e+

∑
ie(Pm, d) which parametrize degree d rational curves in projective space intersecting

given linear subspaces Ωje of Pm and intersecting a hyperplane H ⊂ Pm with prescribed mul-
tiplicities along linear subspaces Γjr,e of H. M0,

∑
tr,e+

∑
ie(Pm, d) has the same dimension as

M0,I(∆m(t),Rm), and also in the classical case the dimension of Xm(E) is given by

(m+ 1)d+m− 3−
∑
e

(m− 1− e)ie −
∑
r,e

(m− 2 + r − e)tr,e

for given vectors i, t.
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As in [GM07b], section 4, we substitute in our setup the tangency conditions to the hyperplane
H encoded by the vector t by the tropical analogue of imposing constraints on the unbounded ends
with direction −e1.
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2.2. Specialization of the conditions

In order to prove a recursive formula for counting rational curves, we specialize the position of
the incidence and tangency conditions. This specialization process causes that the curves in
supp(Xm(E)) split up into “easier” curves, i.e. either the degree or the dimension of the ambi-
ent space decreases or the number of incidence conditions decreases, and a recursion appears. The
approach in this section is the same as in [GM07b].

We assume in this section that Xm(t,Ω,Γ) is zero-dimensional and that Ω, Γ are in general position.

Let ε > 0 be a small, T,N > 0 large real numbers and 0 ≤ E ≤ r − 2 such that there exists a
variety Ω1

E ∈ Ω of dimension E in Ω. Denote the zero-dimensional cell of Ωje ∈ Ω by pje ∈ Rm
(e ∈ N, 1 ≤ j ≤ ie) and the position of the zero-dimensional cell of Γjr,e ∈ Γ by qjr,e ∈ Rm−1 (r,

e ∈ N, 1 ≤ j ≤ tr,e). Denote the coordinates of Rm by x1, . . . , xm and those of Rm−1 by y2, . . . , ym.
We choose the elements of Ω and Γ in each case in general position such that

a) the x2, . . . , xm-coordinates of all pje and the y2, . . . , ym-coordinates of all qjr,e lie in the
interval (−ε, ε),

b) the x1-coordinate of all pje 6= p1
E is in the interval (−ε, ε),

c) the x1-coordinate of p1
E is less than −N and greater than −T ,

i.e. we keep the zero-dimensional cell of all incidence and tangency conditions in a small neighbor-
hood of the origin and we move Ω1

E very far in direction −e1, see figure 2.

−N−T −ε ε

−ε

ε

p1
E remaining pje

−N−T −ε ε

−ε

ε

−N + a −ε− a

R R′ S

Figure 2. Left: All incidence conditions encoded by pje lie in the light gray area
except p1

E , which lies in the dark gray area.
Right: All vertices of a curve (C, h) ∈ X2(E) lie in the gray area R. The area
with the vertical lines represents R′, whereas the area with the horizontal stripes
represents S, with a = 2εd2(m+ 1).

Lemma 2.2.1
All vertices of a curve (C, h) ∈ supp(Xm(t,Ω,Γ)) lie in the set

R := {(x1, . . . , xm)| − T ≤ x1 ≤ ε,−ε ≤ xi ≤ ε for all i = 2, . . .m}.

Proof. Assume that there exists a vertex v ∈ supp(C) such that the x2-coordinate of h(v) is
smaller than −ε. Denote by v1, . . . , vk the vertices of C with minimal x2-coordinate. We want to
show that in this case ⋂

e,j

(evje)
−1(Ωje)

⋂
r,e,j

(evjr,e)
−1(Γjr,e)

is one-dimensional in contradiction to the assumption that Ω and Γ are in general position.

Since the x2-coordinate of v1, . . . , vk is minimal, there must exist a vertex

v ∈ {v1, . . . , vk}
one of whose incident edges is pointing downwards, i.e. running along the edge decreases the
x2-coordinate:

If none of these vertices had an incident edge pointing downwards, by the balancing none of these
vertices would have an edge pointing upwards. This contradicts the assumption that (C, h) has
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degree ∆m(t). But there are no vertices below v1, . . . , vk, hence this edge must be unbounded.
Due to the definition of ∆m(t) the direction of this edge must be (0,−1, 0, . . . , 0) and it must have
weight 1.

Assume without loss of generality that for some p ∈ N all vertices v1, . . . , vp have an incident edge
that points downwards and that all vp+1 . . . , vk have no incident edge that points downwards (and
hence none that points upwards). As C is trivalent, it follows from the balancing condition that
locally around vi, i ∈ [p], the curve (C, h) looks as in figure 3 for some ui ∈ Rr with (ui)2 = 0.

← ui

↗ −ui + e2

↓ −e2

vi

Figure 3. Local picture around a vertex vi ∈ {v1, . . . , vp}; ui ∈ Rr is a vector
with (ui)2 = 0.

We will deform the curve (C, h) in the space M0,I(∆m(t),Rm): We move all vertices vi, i ∈ [p],
upwards in direction −ui+e2 by a small δ > 0 along the incident edge which has direction −ui+e2,
and we move all vertices vj , j = p + 1, . . . , k, upwards in direction e2 by δ > 0, see figure 4. The
length of the edges in direction −ui + e2, i ∈ [p], decreases in the local picture and the remaining
edges which are incident to v1, . . . , vs move upwards in the x2-coordinate, changing neither their
direction nor the remaining coordinates.

↓ −e2−e2 ↓
a1

a2 = a′2

a′1

a∗2a∗1
a

Figure 4. Deformation of the curve (C, h) in the local picture.

For small δ > 0 such a deformation does not change the combinatorial type and the deformed
curves (Cδ, hδ) are still trivalent. Moreover, the curves (Cδ, hδ) differ from (C, h) only locally
around the vertices v1, . . . , vk. We claim that these curves still satisfy all incidence and tangency
conditions, i.e (Cδ, hδ) ∈ supp(Xm(E)):

Assume that an incidence condition Ω∗ ∈ Ω is fulfilled by an edge Ei incident to vi, i ∈ [s] in the
point a1 ∈ supp Ω∗, such that the direction vector of (vi, Ei) has an x2-coordinate which is zero
(e.g. the edge in direction ui in figure 3). Then h(C) intersects Ω∗ in a cell that contains −e2 ·R≥0

as ray because the x2-coordinate of the zero-dimensional cell of Ω∗ is larger than the x2-coordinate
of v1, . . . , vs. Hence, there exists δ > 0 such that a∗1 = a1 + δ · e2 ∈ supp(Ω∗), (see figure 4 for an
example). We conclude that (Cδ, hδ) fulfills the condition Ω∗ for small δ > 0, too, namely in the
point a∗1.

Assume now that v(vi, Ei) = −e1. With the argument from above, we conclude that a1 lies in a
cell of Ω∗ that has −e2 · R≥0 as ray and a′1 = h(vi) ∈ supp(Ω∗). Thus, we are in the first case
again and it holds that (Cδ, hδ) fulfills the condition Ω∗ for small δ > 0, too.

Assume that an incidence condition Ω∗ ∈ Ω is fulfilled in the point a2 ∈ supp(Ω∗) which lies in the
relative interior of an edge Ei incident to vi, i ∈ [s], whose direction vector has an x2-coordinate
which is plus one (e.g. the edge in direction −ui+e2). If we choose 0 < δ smaller than the difference
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of the x2-coordinates of a2 and vi, it is valid that a2 ∈ h(Cδ). Hence, the deformed curve (Cδ, hδ)
satisfies the incidence condition Ω∗. See figure 4 for an example.

This is a contradiction to the assumption that Xm(E) is zero-dimensional.

If a tangency condition Γ∗ ∈ Γ is fulfilled by an edge incident to some v1, . . . , vs, we similarly see
that also the curve (Cδ, hδ) fulfills the condition Γ∗ for small δ > 0.

In the same way we see that no vertex can have its x1-coordinate below −T , its x1-, . . . , xm-
coordinate above ε nor its x3-, . . . , xm-coordinate below −ε. �

Lemma 2.2.2
Set a := 2εd2(m+ 1). No vertices of a curve (C, h) ∈ supp(Xm(t,Ω,Γ)) lie in the strip

S := {(x1, . . . , xr)| −N + a < x1 < −ε− a}.

Proof. First note that the previous lemma implies that all edges leaving

R′ := {(x1, . . . , xr)| −N < x1 < −ε,−ε ≤ xi ≤ ε for all i = 2, . . . r}

without passing the hyperplanes {x1 = −N} or {x1 = −ε} must be unbounded and go straight to
infinity as there are no vertices outside the area R defined in the last lemma (see figure 2).

Consider a connected component C0 of h−1(R′) and assume that it contains a vertex v ∈ C0 with
h(v) ∈ S. We will show that in this case⋂

e,j

(evje)
−1(Ωje)

⋂
e,m,j

(evjr,e)
−1(Γjr,e)

has dimension one in contradiction to the assumption that Ω, Γ are in general position and
Xm(t,Ω,Γ) is zero-dimensional.

Since C and C0 are connected and balanced and since (C, h) has a generalized projective degree d,
h(C0) intersects the hyperplane {x1 = −N} and we can run from v along C0 to this hyperplane.
We claim that we pass at least one edge with direction −e1 no matter which path we choose:

Assume that there exists a path in C0 from v to {x1 = −N} which does not contain a flag
with direction vector −e1 and let E be an arbitrary edge which is passed on the way from v to
{x1 = −N}. Let v1, v2 ∈ E be the incident vertices. For degree reasons no entry of the weighted
direction vector u = ω(E) · v(v1, E) = −ω(E) · v(v2, E) ∈ Rm can have entries ui, i ∈ {1, . . . ,m},
with |ui| > d. Hence, the x1-coordinates of v1 and v2 differ by less than 2εd. Since the x1-coordinate
of v ∈ S differs from −N by more than 2εd2(m+ 1), we pass more than d(m+ 1) vertices on the
way from v to the hyperplane {x1 = −N}. As C is rational, the curve C has more than d(m+ 1)
leaves, which is a contradiction to the assumption that C has a generalized projective degree d in
Rm.

If it is possible to run in C0 from the vertex V to the hyperplane {x1 = −ε}, we see by the same
argument that we pass at least one edge with direction e1.

Denote the maximal connected part of C which contains the vertex v and no edge in direction ±e1

by Cv. We can deform (C, h) to (Cδ, hδ) without changing the combinatorial type by displacing
only Cv in direction ±e1 by δ > 0 (i.e. we change the length of all edges incident to Cv, which
have direction ±e1, by ±δ).
These deformed curves (Cδ, hδ) still fulfill all incidence conditions: Assume that (C, h) fulfills the
incidence condition Ω∗ ∈ Ω in the point a ∈ supp(Ω∗) ∩ S. Since the zero-dimensional cells of
all incidence conditions except Ω1

E have an x1-coordinate larger than −ε but all points in S have
x1-coordinate smaller than −ε, the point a must lie on a facet of Ω∗ that contains a ray in direction
−e1. Hence, the curve (Cδ, hδ) still fulfills the condition Ω∗, namely in the point a±δe1 ∈ supp(Ω∗).
Moreover, it holds supp(Ω1

E) ∩ S = ∅ because a > ε. �

Corollary 2.2.3
The intersection h(C) ∩ S contains only edges in direction ±e1.
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S

2

(E, 1)

(E, 1)

(C ′0, h
′
0)

S

(C1, h1)

S

(C2, h2)

S

Figure 5. A curve (C, h) in some X2(∆4,Ω,Γ) and the splitting into (C ′0, h
′
0),

(C1, h1) and (C2, h2). The black points represent the zero-dimensional incidence
and tangency conditions in Ω and Γ. (One-dimensional conditions do not restrict
a curve in R2.)

See figure 5 for an example of a curve in some X2(∆4,Ω,Γ). By cutting the edges which lie in S
and by setting the length of the cut edges to infinity, the curves (C, h) ∈ suppXm(E) decompose
into one curve (C ′0, h

′
0) which lies “on the left” and curves (C1, h1), . . . , (Cl, hl), l ∈ N, which lie

“on the right”. These decomposed curves are simpler than (C, h) because either the degree or the
dimension of the ambient space or the number of incidence conditions has dropped. By counting
the number of the decomposed curves in suitable intersection products we will find a recursion
which allows to calculate Nm(E). The splitting process will be made more precise in the following
section.

Corollary 2.2.4
Let (C, h) ∈ Xm(E) and assume that E is general and specialized as described at the beginning of
this section. If a point p = evje(C, h) with first coordinate p1 ≤ −ε−a fulfills an incidence condition
Ωje ∈ Ω \ {Ω1

E}, it follows that P is contained in a cell of Ωje which contains the ray R≤0 · e1 (at
least if we take the coarsest polyhedral structure on Ωje, which is a translate of Lme ).
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2.3. Recursive structure of M0,I(∆m(t),Rm)

We describe the splitting process of elements of Xm(E), which is possible due to the results of
the previous section. The aim is to express the degree of the intersection product Xm(E) on
M0,I(∆m(t),Rm) via the degree of suitable intersection products on spaces of the form

M0,I0(∆m−1(t′(0)),Rm−1)×M0,I1(∆m(t′(1)),Rm)× · · · ×M0,Il(∆m(t′(k)),Rm),

where each of the factors has “easier” data than M0,I(∆m(t),Rm).

For a moduli space of rational curves M0,I(∆,Rm), we denote by M0,I(∆,Rm)◦ the subvariety
that consists precisely of the trivalent curves and whose weights on the facets are all one.

Assume that the data E is general and specialized as in the previous section, i.e. one incidence
condition has a very small x1-coordinate and all other coordinates of the incidence and tangency
conditions are very close to the origin.

Construction 2.3.1 (Splitting of trivalent curves (C, h) ∈M0,I(∆m(t),Rm)◦)
See figure 6 for an example of the following construction. Let

(C, h) ∈M0,I(∆m(t),Rm)◦,

i.e. C is trivalent, (C, h) lies in the interior of a facet and we do not demand that (C, h) fulfills
any incidence or tangency conditions. Denote by C∗ the polyhedral complex given by the maximal
connected part of (C, h)

a) which contains the leaf x(E,1) labeled by (E, 1) and
b) which fulfills that the path from x(E,1) to any p ∈ supp(C∗) contains no flag segment with

(primitive) direction vector e1,

see figure 6 for an example. Let l ∈ N be the number of flags of C that are incident to C∗ (and
all have direction e1) and denote the corresponding edges by E1, . . . , El. For all k ∈ [l] denote the
weight of the edge Ek by ω(Ek) = rk. We remove C∗ from C and denote the connected polyhedral
complex which contains the edge Ei, i ∈ [l], by C ′i. The complexes C∗, C ′1, . . . , C

′
l induce a partition

of the sets Ω, Γ into

Ω =
⋃̇l

k=0
Ω(k) and Γ =

⋃̇l

k=0
Γ(k),

such that each C ′k, k = 1, . . . , l, contains the marked point labeled by (e, j) and (r, e, j) if and only
if Γjr,e ∈ Γ(k) and Ωje ∈ Ω(k), respectively, and such that C∗ contains the marked point labeled by

the (e, j) and (r, e, j) if and only if Ωje ∈ Ω(0) and Γjr,e ∈ Γ(0). Denote the induced partition of the
vectors i and t by

i =

l∑
k=0

i(k) and t =

l∑
k=0

t(k).

For k = 0, . . . , l, denote the data (t(k),Ω(k),Γ(k)) by E(k).

Consider C ′k, k ∈ [l], set the length of the edge Ek to infinity and denote the arising curve by Ck.
Choose hk : Ck → Rm such that hk|C′k = h|C′k .

Let π : Rm → Rm−1, (x1, . . . , xm) 7→ (x2, . . . , xm), be the projection which forgets the first
coordinate. Add to C∗ all edges E1, . . . , El, set their length to infinity and denote the arising curve
by C ′0 = C0. Let the parametrization h′0 : C ′0 → Rm be induced by h and let the parametrization
h0 : C0 → Rm−1 be given by h0 = π ◦ h′0 : C0 → Rm−1.

Since an edge Ek, k ∈ [l], has direction e1 and since C is rational, it follows from the balancing
condition that, for an appropriate labeling, the curve (Ck, hk) has degree ∆m(t′(k)), where

t′(k) = t(k) + εrk,m−1.

εrk,m−1 stands for the leaf coming from the cut edge Ek whose length we set to infinity. ∆mt
′(k)

is a generalized projective degree d(t′(k)) = d(t(k)) + rk.

Set d0 = d(t)−
∑l
k=1(d(t(k)) + rk) = d(t)−

∑l
k=1 d(t′(0)) and

t′(0) = d0 · ε1,m−2.
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2
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(2, 1, 1)

(1, 0, 1)

(E, 1)

h0(C0)

(1, 1, 1)
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h1(C1)
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(0, 5)(1, 0, 1)
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Figure 6. A curve (C, h) ∈ M0,I(∆2(t),R2)◦ and the splitting into (C ′0, h
′
0),

(C1, h1) and (C2, h2). t is given by t1,0 = 2, t2,1 = 1 and all other tr,e are zero.
The thick part represents C∗. Moreover the deformation of (C ′0, h

′
0 : C ′0 → R2)

into (C0, h0 : C0 → R1). The black points represent the marked points xi with
i ∈ I.

∆m−1(t′(0)) is a generalized projective degree d0 = d(t′(0)).

Choose the labeling of the marked points on C0, . . . , Cl in the following way:

For k ∈ [l], label the leaves in Ck arising from the edge Ek by

(rk,m− 1, t(k)rk,m−1 + 1),

which means that it is the leaf of weight rk which has to intersect a variety of dimension m − 1
with the highest number t(k)rk,m−1 + 1. For shortening notation, we denote this leaf by xrk , too.
Label the marked point of C0, which comes from the edge Ek by Ek (it is hence denoted by xEk).
The labeling of the remaining leaves in Ck, k = 0, . . . , l, is chosen

• such that leaves with a higher number in C go to leaves with a higher number in Ck,
• such that (Ck, hk) has generalized projective degree ∆m(t′(k)) for k = 0, . . . , l and
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• such that a label (e, j) ∈ I of C goes to a label (e, jk) with 1 ≤ jk ≤ i(k)e.

After having chosen the order of the cut edges E1, . . . , El, this labeling is unique. See figure 6 for
an example.

Define

I0 := {(r, e, j)|r, e, j ∈ N, 1 ≤ j ≤ t(0)r,e} ∪ {(e, j)|e, j ∈ N, 1 ≤ j ≤ i(0)e} ∪ {Ek}k∈[l]

and for k ∈ [l]
Ik := {(e, j)|e ∈ N, 0 ≤ j ≤ i(k)e}.

Let k ∈ [l]. Then Ik stands for the marked points of Ck which come from marked points of C. I0
has three parts:

a) The marked points labeled by (e, j) of C0 which come from marked points of C,
b) the marked points labeled by (r, e, j) of C which come from leaves of direction −e1 of C,

belong to C ′0 and which are contracted by h0 via the projection to Rm/〈e1〉 and
c) the marked points labeled by Ek which come from the cut edges Ek linking C ′0 to Ck which

are contracted by the projection to Rm−1.

With this notation, it holds that (Ck, hk) ∈ M0,Ik(∆mk(t′(k)),Rmk) for all k = 0, . . . , l, where
m0 = m− 1 and mk = m for all k ∈ [l]. For shortening notation, we set

M0 :=M0,I0(∆m−1(t′(0)),Rm−1) and Mk :=M0,Ik(∆m(t′(k)),Rm) for all k ∈ [l].

For k = 0, . . . , l, denote by ev
j,(k)
e : Mk → Rmk (m0 = m − 1 and mk = m for mk ∈ [m]) the

evaluation map of the marked point that corresponds to the marked point of M0,I(∆m(t),Rm)

labeled by (e, j). Define ev
j,(k)
r,e : Mk → Rm accordingly. evrk : Mk → Rm−1 and evEk : M0 →

Rm−1 are the evaluation maps that correspond to the cut edge Ek (k ∈ [l]).

In particular, the splitting of (C, h) into curves (Ck, hk), k = 0, . . . , l, induces a partition of the
data E into E(k) = (t(k),Ω(k),Γ(k)).

Remark 2.3.2
The projection of (C0, h

′
0 : C0 → Rm) to (C0, h0 : C0 → Rm−1) is necessary because we want

to establish a recursive formula which counts tropical curves of generalized projective degree.
Since in general the curve (C ′0, h

′
0) does not have a generalized projective degree (there will be

unbounded flags with direction e1 linking C ′0 to the curves C1, . . . , Cl), we cannot count curves of
this combinatorial type. However, the curve (C0, h0) has a (generalized) projective degree. We will
see that we do not lose relevant information in this projection. Since the curves (Ck, hk), k ∈ [l],
already have a generalized projective degree, no projection is necessary here.

Notation 2.3.3 (φ1, φ2 : Rm → R)
Remember that the position of the variety Ω1

E ∈ Ω(0) is given by p1
E , i.e. supp(Ω1

E) = p1
E +

supp(LmE ). Define the rational functions φ1, φ2 : Rm → R via

φ1(x1, . . . , xr) = max{0, x1 − (p1
E)1, . . . , xm − (p1

E)m}
and

φ2(x1, . . . , xr) = max{0, x2 − (p1
E)2, . . . , xm − (p1

E)m}.

Lemma 2.3.4
Let 0 ≤ E < m. Then it holds φ1 · φm−E−1

2 · Rm = Ω1
E .

Proof. Without loss of generality, we assume p1
E = 0 ∈ Rm. We prove this statement by

induction on m−E − 1. If m−E − 1 = 0, i.e. m− 1 = E, the statement is true. So it remains to
calculate

φ1 · φm−E2 = φ2 · φ1 · φm−E−1
2 = φ2 · LmE+1.

Since φ2 is constant on all facets of LmE+1 (where we use the coarsest polyhedral structure), the
support of φ2 · LmE+1 is contained in the support of LmE (which is the E-skeleton of LmE+1 using
the coarsest polyhedral structure). Similar to the calculation of LmE , we see that all weights are
one. �
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Definition 2.3.5 (The varieties M+, M+
k and M (E(0),...,E(l)))

By M+ we denote the open subvariety ofM0,I(∆m(t),Rm)◦ whose support consists of all trivalent
curves (C, h) ∈ M0,I(∆m(t),Rm) which fulfill the following condition (which is motivated by the
conditions that the curves in the support of X(E) fulfill if E is specialized as described at the
beginning of the previous section):

Assume that (C, h) ∈M0,I(∆,Rm) is trivalent and is split up into ((C0, h0), . . . , (Cl, hl)). Denote
the vertex at the left end of the edge Ek by vEk and the vertex on the right end by vrk (where rk

is the multiplicity of the cut edge Ek). Then (C, h) is contained in the support of M+ if for all
k ∈ [l] the first coordinate of h(vrk) of (Ck, hk) lies on the right of

2εd2(m+ 1) · e1 + supp(φ1 · Rm) = p1
E + 2εd2(m+ 1) · e1 + suppLmE .

Said differently: If p ∈ supp(φ1 ·Rm) such that the x2-, . . . , xm-coordinates of p coincide with those
of hk(vrk), then it holds that the difference of the x1-coordinates of hk(vrk) and p is greater than
2εd2(m+ 1), i.e. (hk(vrk))1− p1 > 2εd2(m+ 1). Moreover, we demand that the first coordinate of
h(vEk) lies on the left of

2εd2(m+ 1) · e1 + supp(φ1 · Rm) = p1
E + 2εd2(m+ 1) · e1 + suppLmE .

M+ has the same dimension as M0,I(∆m(t),Rm), and we equip all facets with weight one.

We define the varieties M+
k accordingly as the subvariety of Mk containing only trivalent curves

which fulfill that the vertex vrk adjacent to the leaf xrk lies on the right of

2εd2(m+ 1) · e1 + supp(φ1 · Rm) = p1
E + 2εd2(m+ 1) · e1 + suppLmE .

Let (C, h) ∈ M0,I(∆m(t),Rm)◦, in particular C is trivalent, and let E(0), . . . , E(l) be the induced
partition of E as in the construction above (which includes the choice of the labeling of the cut
edges). Then we say that (C, h) has splitting type (E(0), . . . , E(l)). Note that curves which lie in the
same facet as (C, h) have the same combinatorial type and hence also splitting type (E(0), . . . , E(l))
if we choose the labeling of the cut edges consistently.

Denote by

M (E(0),...,E(l))

the subvariety of M+ whose support contains only curves of splitting type

(E(0), . . . , E(l))

and whose weights on the facets are all one.

Remark 2.3.6
A curve (C, h) ∈ M0,I(∆m(t),Rm)◦ that has splitting type (E(0), . . . , E(l)) has l! splitting types,
namely all

(E(0), E(σ(1)), · · · , E(σ(l)))

with σ ∈ Sl, which correspond to the possible labelings of the l cut edges linking the curve C ′0 on
the left with l curves C ′k on the right. Therefore it holds

M+ =
∑ 1

l!
M (E(0),...,E(l)),

where the sum runs over all (ordered) partitions (E(0), . . . , E(l)) of E .

Construction 2.3.7 (The variety M+
0 )

Let (C0, h0) ∈ M0. Then we can associate to it a curve (C0, h
′
0 : C0 → Rm) that fulfills h0 =

π ◦ h′0 : C0 → Rm−1 in the following way - reversing the splitting process:

A leaf of (C0, h
′
0) that has direction −e2, . . . ,−em,−e0 ∈ Rm−1 in (C0, h0) (the coordinates on

Rm−1 are y2, . . . , ym) gets the direction −e2, . . . ,−em,−e0 ∈ Rm and weight one. Moreover, the
leaves labeled by (r, e, j) ∈ Γ(0) ⊂ I0 get direction −e1 ∈ Rm and weight r, the leaves labeled by
Ek ∈ I0 get direction e1 ∈ Rm and weight rk. The contracted leaves labeled by (e, j) ∈ I are still
contracted to a point by h′0. (C0, h

′
0) is a tropical curve since d(t′(0)) = d(t(0))−

∑
k∈[l] r

k (where
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d(t′(0)) is the projective degree of (C0, h0)). The position of the root vertex of (C0, h
′
0) is chosen

such that h0 = π ◦ h′0 and such that

h′0(x1
E) ∈ supp(φ1 · Rm),

i.e. the image of the marked point x1
E is contained in φ1 · Rm. This second condition is possible

because φ1 · Rm is a hyperplane. Denote the vertex adjacent to the leaf labeled by Ek by vEk .

We define M+
0 as the subvariety of M0 whose support contains all trivalent curves (C0, h0) ∈ M0

such that (C0, h
′
0) has the property that h′0(vEk) lies on the left of

2εd2(m+ 1) · e1 + supp(φ1 · Rm),

i.e. there exists p ∈ εd2(m + 1) · e1 + supp(φ1 · Rm) such that the x2-, . . . , xm-coordinates of p
coincide with those of h′0(vEk) and such that the x1-coordinate of p is greater than that of h′0(xEk).

For every partition (E(0), . . . , E(l)) of E we are going to construct an open morphism

Ψ(E(0),...,E(l)) : (ev1
E)∗φ1 ·M (E(0),...,E(l)) →M+

0 × · · · ×M
+
l .

Moreover, we calculate the push-forward of M (E(0),...,E(l)) along Ψ(E(0),...,E(l)).

Construction 2.3.8 (The diagonal Z in Rm−1, the map Ψ(E(0),...,E(l)))
Let Z := max{x1, y1}·· · · ·max{xm−1, ym−1}·(Rm−1×Rm−1) denote the diagonal in Rm−1×Rm−1

and, for k = 1, . . . , l, define

evk,k : M0 × · · · ×Ml → Rm−1 × Rm−1

(Ci, hi)i∈{0,...,l} 7→ (evEk(C0, h0), evrk(Ck, hk)).

Denote by πl+1
k : M0 × · · · ×Ml → Mk the projection onto the factor with index k ∈ {0, . . . , l}.

Then it holds

evk,k = (evEk ◦π
l+1
0 )× (evrk ◦πl+1

k ).

Define the map

Ψ(E(0),...,E(l)) : (ev1
E)∗(φ1) ·M (E(0),...,E(l)) →

∏
k∈[l]

ev∗k,k Z

 · (M+
0 × · · · ×M

+
l

)
(C, h) 7→ ((C0, h0), . . . , (Cl, hl))

where the (l + 1)-tuple ((C0, h0), . . . , (Cl, hl)) arises from splitting up the curve (C, h) as in con-
struction 2.3.1. We show below that this map is well-defined.

We denote Ψ(E(0),...,E(l)) just by Ψ if no confusion can occur.

Lemma 2.3.9
It holds

Ψ∗

(
(ev1

E)∗(φ1) ·M (E(0),...,E(l))
)

=
(d(t)!)m ·

∏
k∈[l] r

k∏l
k=0(d(t′(k))!)m

∏
k∈[l]

ev∗k,k(Z)

 · (M+
0 × · · · ×M

+
l

)
.

We will split up the proof into some lemmata.

Remark 2.3.10 (Geometric relevance of
∏

ev∗k,k(Z)(M+
0 × · · · ×M

+
l ))

Given a curve (C, h) ∈ M+ ⊂ M0,I(∆m(t),Rm)◦ of splitting type (E(0), . . . , E(l)), we are in-
terested in the spaces M+

0 × · · · ×M
+
l , whose support contains the (l + 1)-tuple of split curves

((C0, h0), . . . , (Cl, hl)), see construction 2.3.1. This is guaranteed by the condition on the first
coordinate of h(xrk) in the construction of M+ (this point lies on the right of 2εd2(m + 1) · e1 +
supp(φ1 · Rm). Now we also want to go the other way round: Given a tuple

((C0, h0), . . . , (Cl, hl)) ∈M+
0 × · · · ×M

+
l

we want to glue the curves together to a curve (C, h) ∈ M0,I(∆m(t),Rm). Obviously, this is not
possible for all tuples ((C0, h0), . . . , (Cl, hl)) but (at most) for those where the evaluation of a leaf
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xrk of (Ck, hk) (which comes from the cut edge Ek and which has direction −e1) lies in h0(C0) for
all k ∈ [l]. Hence, we consider the space∏

k∈[l]

ev∗k,k(Z)

(M+
0 × · · · ×M

+
l

)
in which, by the pull-back of the diagonal, we demand for all k ∈ [l] that

evEk(C0, h0) = evrk(Ck, hk),

i.e. we demand that the evaluation of the contracted leaf labeled by Ek of (C0, h0) and the evalu-
ation of the non-contracted leaf xrk of (Ck, hk) coincide in Rm−1. (Remember that the pull-back
is contained in the preimage.)

Lemma 2.3.11
It holds that the support of ∏

ev∗k,k(Z)(M0 × · · · ×Ml)

is equal to the locus where evrk ◦πk = evEk ◦π0 for all k ∈ [l]. Moreover, the weight on each facet
is one.

Proof. M0 × · · · ×Ml is isomorphic to

(M0,I0∪∆m(t′(0)) × · · · ×M0,Il∪∆m(t′(l)))× (Rm−1)l+1 × Rl

where (Rm−1)l+1 × Rl stands for the coordinates of the root vertices of Mk, k = 0, . . . , l. We use
the leaf labeled by rk (coming from the cut edge Ek) as root coordinates for Mk, k ∈ [l], together
with the x1-coordinate of an arbitrary marked point xk with k ∈ Ik. As root vertex on M0 we
use alternately the marked points xEk (also coming from the cut edges Ek). Hence, the evaluation
maps evrk and evEk that appear in evk,k are just the identity map on the second factor of the
respective moduli space. In order to calculate∏

ev∗k,k(Z)(M0 × · · · ×Ml),

we hence only have to calculate the intersection product∏
k∈[l]

(πl+1
0 × πl+1

k )∗Z · (Rm−1)l+1

where πl+1
j : (Rm−1)l+1 is the projection on the j-the factor. By induction we see that its support

is {(x, . . . , x)|x ∈ Rm−1} ⊂ (Rm−1)l+1 and the weights are all one. �

Lemma 2.3.12
The map Ψ(E(0),...,E(l)) is a surjective morphism.

Proof. Remember that the pull-back is contained in the preimage. Due to the condition that
the first coordinates of h(vEk) inM+ and h′0(vEk) inM+

0 lie on the left of 2εd2(m+1)+supp(φ1·Rm)
and due to the condition that the first coordinate of h(vrk) in M+ and hk(vrk) in M+

k lie on the

right of 2εd2(m+ 1) + supp(φ1 ·Rm), the map Ψ(E(0),...,E(l)) is well-defined. (See the construction
of the spaces for an explanation of the notation.)

Ψ(E(0),...,E(l)) is surjective: Given a tuple

((C0, h0), . . . , (Cl, hl)) ∈

∏
k∈[l]

ev∗k,k(Z)

 · (M+
0 × · · · ×M

+
l

)
,

we can associate to (C0, h0) a curve (C0, h
′
0 : C0 → Rm) that fulfills h′0(x1

E) ∈ supp(φ1 · Rm), see
the construction of M+

0 above. Due to the last lemma, it holds

evEk(C0, h0) = evrk(Ck, hk)

for all k ∈ [l]. Using the condition on curves (C0, h0) ∈ supp(M+
0 ) and (Ck, hk) ∈ supp(M+

k ),
namely that the first coordinate of h′0(xEk) is less than the first coordinate of hk(xrk), it follows
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that we can glue the curves (C0, h
′
0) and (Ck, hk) together - at the leaves xEk of C0 and xrk of

Ck - creating a new interior edge of positive length and weight rk. We choose the labeling of
the arising curve (C, h) ∈ supp

(
(ev1

E)∗(φ1) ·M (E(0),...,E(l))
)

in a way that the splitting process
yields again the tuple ((C0, h0), . . . , (Cl, hl)). Due to the lemma above, the image of a facet of

(ev1
E)∗(φ1)·M (E(0),...,E(l)) is a facet of

(∏
k∈[l] ev∗k,k Z

)
·
(
M+

0 × · · · ×M
+
l

)
(if we choose compatible

polyhedral structures).

Ψ(E(0),...,E(l)) is a morphism: We consider the edge lengths and the coordinates of one root vertex
per moduli space as local coordinates. As root vertex for a curve

(C, h) ∈ supp((ev1
E)∗(φ1) ·M (E(0),...,E(l)))

choose the leaf (E, 1) which is part of C0 (see construction 2.3.1). The edge lengths of C are in
1 : 1-correspondence to the edge lengths of the curves C0, . . . , Cl except for the l edges E1, . . . , El
with direction ±e1 linking the curves C1, . . . , Cl to the curve C ′0 “on the left”: In the curves
C1, . . . , Cl the lengths of these edges is set to infinity. Moreover, the x2, . . . , xr-coordinates of the
root vertex of (C, h) correspond to the coordinates of the root vertices of (Ck, hk), k = 0, . . . , l. If
only the x1-coordinates of the root vertex of (C, h) varies, Ψ(E(0),...,E(l))(C, h) remains unchanged.
If the edge length of Ek, k ∈ [l], varies by a ∈ R, the x1-coordinate of the root vertex of Mk varies
by rk · a, where rk is the weight of the edge Ek.

�

Proof of 2.3.9. (ev1
E)∗(φ1) ·M0,I(∆m(t),Rm) is isomorphic toMI∪∆m(t)× (φ1 ·Rm) using

the marked point labeled by (E, 1) as root vertex and it holds

supp(M (E(0),...,E(l))) ⊂M0,I(∆m(t),Rm).

Thus the weights in the domain of ΨE(0),...,E(l) are all one. Also the weight of a facet of∏
k∈[l]

ev∗k,k(Z)

 · (M◦0 × · · · ×M◦l )

is one, see lemma 2.3.11.

Since we project the curve (C ′0, h
′
0) on the left to Rm/R · e1, changing the x1-coordinate of h(x1

E)

(with x1
E ⊂ C ′0), does not change the image of (C, h) under ΨE(0),...,E(l). Hence, we see that

ΨE(0),...,E(l) is injective in a neighborhood of (C, h) ∈ supp((ev1
E)∗φ1 ·M (E(0),...,E(l)) if and only if

the image h(x1
E) of the marked point x1

E of C is contained in a facet of φ1 ·Rm which does contain
−e1 as ray (φ1 · Rm is a translate of Lmm−1).

The weight of the facet σ of

(Ψ(E(0),...,E(l)))∗(ev1
E)∗(φ1) ·M (E(0),...,E(l))

which contains the tuple of curves ((C0, h0), . . . , (Cl, hl)) ∈ σ is determined by the index of
the linear part of the map Ψ(E(0),...,E(l)) restricted to σ and by the number of preimages of
((C0, h0), . . . , (Cl, hl)) under Ψ(E(0),...,E(l)) which lie in facets on which the map Ψ(E(0),...,E(l)) is
injective. (The weights of the facets do not play a role in this case because they are all one.)

It follows from the proof of surjectivity in the last lemma that the preimages (C, h) of tuples
((Ck, hk))k=0,...,l only differ in the labeling of the leaves of C which are labeled by {1, . . . , d(t)} ∪
{2d(t) + 1, . . . , (m+ 1)d(t)}, i.e. the leaves which have standard directions apart from −e1. Let us
count the number of these labelings:

The splitting process prescribes which ends of C in direction −ei, i = 0, 2, . . . ,m go the the curves
C0, . . . , Cl. The labeling of the leaves of Ck respects the order of the corresponding leaves in C,

see construction 2.3.1. Hence, there are d(t)!∏l
k=0 d(t′(k))!

possibilities to choose a labeling of the d(t)

leaves with direction −ei of C such that the leaves of all Ck get a prescribed labeling. Considering
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all directions −e0,−e2, . . . ,−em, the number of possibilities to label the leaves of the curve (C, h)
without changing Ψ(E(0),...,E(l))(C, h) = ((C0, h0), . . . , (Cl, hl)) is given by

(d(t)!)m∏l
k=0(d(t′(k))!)m

.

Finally, we analyze the linear part of Ψ(E(0),...,E(l)): As already mentioned in the proof of proposition
2.3.12, the map ΨE(0),...,E(l) equals the identity in all coordinates but those which encode the lengths
of the edges linking C ′0, which lies “on the left”, with the curves C1, . . . , Cl “on the right”. When
the length of the edge linking C ′0 and Ck varies by ak ∈ R, the x1-coordinate of the root vertex of
(Ck, hk) varies by rk · ak, where rk is the weight of the edge linking C ′0 to Ck. Hence, the index of
Ψ(E(0),...,E(l)) is given by

∏
k∈[l] r

k.

Altogether, we conclude that

Ψ∗(ev1
E)∗(φ1) ·M (E(0),...,E(l)) =

(d(t)!)m ·
∏
k∈[l] r

k∏l
k=0(d(t′(k))!)m

∏
k∈[l]

ev∗k,k(Z)

(M+
0 × · · · ×M

+
l

)
.

�
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2.4. A recursive formula

Notation 2.4.1
Remember that π : Rm → Rm−1 is the projection on the last m− 1 coordinates and that ε > 0 is
a small number such that the zero-dimensional cell of all Ωje ∈ Ω \ {Ω1

E} has x1-coordinate larger
than −ε. Denote by i : Rm−1 → R the inclusion map (x1, . . . , xm−1) 7→ (0, x1, . . . , xm−1). It holds
π ◦ i = idRm−1 .

The idea behind the following definitions is that we split and deform the incidence and tangency
conditions Ω and Γ such that they become incidence and tangency conditions in the split spaces
M0, . . . ,Ml. Define

• Ω
j,(0)
e := π∗({max{x1,−N} · Ωje) for Ωje ∈ Ω(0) \ {Ω1

E} (we project the part of Ωje in the
region {x1 << 0} to Rm−1),

• Ω
1,(0)
E := (i∗φ2)m−E−1 ·Rm−1 (we project φ1 ·φm−E+1

2 ·Rm = Ω1
E except φ1 ·Rm to Rm−1),

• Γ
j,(0)
1,m−2 = Rm−2 for 1 ≤ j ≤ d(t′(0)) (the leaves of (C0, h0) in direction −e1 are unre-

stricted),

• Ω
j,(k)
e = Ωje for Ωje ∈ Ω(k), k ∈ [l],

• Γ
j,(k)
r,e = Γjr,e for Γjr,e ∈ Γ(k), k = 0, . . . , l and

• Γ
t(k)

rk,m−1
+1,(k)

rk,m−1
= Γr

k

= Rm−1 for k ∈ [l] (the additional leaf in Mk with direction −e1

and weight rk coming from the cut edge Ek is unrestricted).

Set

• Ω(0)′ = {Ωj,(0)
e |Ωje ∈ Ω(0)} ∪ {Γj,(0)

r,e |Γjr,e ∈ Γ(0)},
• Γ(0)′ = {Γj,(0)

1,m−2|j = 1, . . . , d(t′(0))},
• Ω(k)′ = {Ωj,(k)

e |Ωje ∈ Ω(k)} for k = 1, . . . , l and

• Γ(k)′ = {Γj,(k)
r,e |Γjr,e ∈ Γ(k)} ∪ {Γ

t(k)
rk,m−1

+1,(k)

rk,m−1
} and

• E(k)′ = (t(k)′,Ω(k)′,Γ(k)′) for k = 0, . . . , l.

Note that Γ(k)′ is a set of tangency conditions for the vector t′(k), k = 0, . . . , l, defined in con-
struction 2.3.1.

Proposition 2.4.2
Let E be general and specialized as described at the beginning of section 2.2. Then the degree of
Xm(E) is equal to the degree of

∑ (d(t)!)m ·
(∏l

k=1 r
k
)

l! ·
∏l
k=0(d(t′(k))!)m

∏
k∈[l]

(evk,k)∗(Z)

 l∏
k=0

Xmk(E(k)′)

where the sum runs over all partitions (E(0), . . . , E(l)) of E .

Proof. Denote by πl+1
k : M0 × · · · ×Ml the projection onto the k-th factor, k ∈ {0, . . . , l}. It

holds that

• ev
j,(k)
e ◦πl+1

k ◦Ψ = evje for all labels (e, j) that go to the curve Ck, k ∈ [l],

• ev
j,(k)
r,e ◦πl+1

k ◦Ψ = evjr,e for all labels (r, e, j) that go to the curve Ck, k = 0, . . . , l,

• ev
j,(0)
e ◦πl+1

0 ◦Ψ = π ◦ evje for all labels (e, j) that got to the curve C0.

Moreover, for a label (e, j) 6= (E, 1) that goes to C0 it is true that

(π ◦ evje)
∗Ωj,(0)

e = (π ◦ evje)
∗π∗(max{x1,−N} · Ωje) = (evje)

∗π∗π∗(max{x1,−N} · Ωje) = (evje)
∗Ωje,

at least in the region {x ∈ Rm|x1 << 0} where Ωje is fulfilled by the elements of supp(Xm(E)), see
corollary 2.2.4. Furthermore it holds

(π ◦ evje)
∗Ω

1,(0)
E = (evje)

∗π∗(i∗φ2)m−E−1 · Rm−1) = (evje)
∗(φm−E−1

2 ),

because φ2 does not depend on the first coordinate.
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Since E is general and due to 2.2.2, all curves (C, h) ∈ supp(Xm(E)) lie in the support of M+.
Moreover, the push-forward preserves the degree of zero-dimensional varieties. Using the projection
formula (p.f.), we conclude

deg(Xm(E)) = deg

∏
(e,j)

(evje)
∗(Ωje)

∏
(r,e,j)

(evjr,e)
∗(Γjr,e) · M0,I(∆m(t),Rm)


2.2.2,2.2.1

= deg

∏
(e,j)

(evje)
∗(Ωje)

∏
(r,e,j)

(evjr,e)
∗(Γjr,e) ·M+


2.3.6
=

∑ 1

l!
deg

( l∏
k=0

 ∏
Ω
j
e∈Ω(k)

Ψ∗(πl+1
k )∗(evj,(k)

e )∗Ωj,(k)
e

∏
Γ
j
r,e∈Γ(k)

Ψ∗(πl+1
k )∗(evj,(k)

r,e )∗Γj,(k)
r,e


·(ev1

E)∗(φ1) ·M (E(0),...,E(l))

)
p.f.
=

∑ 1

l!
deg

(
l∏

k=0

 ∏
Ω
j,(k)
e ∈Ω(k)′

(πl+1
k )∗(evj,(k)

e )∗Ωj,(k)
e

∏
Γ
j,(k)
r,e ∈Γ(k)′

(πl+1
k )∗(evj,(k)

r,e )∗(Γj,(k)
r,e )


·Ψ∗

(
(ev1

E)∗(φ1) ·M (E(0),...,E(l))
))

2.3.9
=

∑ (d(t)!)m
∏l
k=1 r

k

l! ·
∏l
k=0(d(t′(k))!)m

deg

[∏
k∈[l]

ev∗k,k(Z)


·
l∏

k=0

 ∏
Ω
j,(k)
e ∈Ω(k)′

(evj,(k)
e )∗Ωj,(k)

e

∏
Γ
j,(k)
r,e ∈Γ(k)′

(evj,(k)
r,e )∗(Γj,(k)

r,e ) ·M+
k

]

where the sum runs over all partitions (E(0), . . . , E(l)) of E .

With the same argument as in lemma 2.2.1 we see that all tuples of curves ((C0, h0), . . . , (Cl, hl))
that lie in the support of the intersection product∏

k∈[l]

ev∗k,k(Z)

Xm−1(E(0)′)×Xm(E(1)′)× · · · ×Xm(E(l)′)

actually lie in the support of M+
0 × · · ·×M

+
l - at least if all conditions in E and also the diagonals

Z are general and if E is specialized as described at the beginning of section 2.2. Hence, the claim
follows.

�

Lemma 2.4.3 (Splitting lemma)
With ek := dim(Xm(E(k)′)) for all k ∈ [l] and m0 = m− 1 and mk = m for k ∈ [l], it is valid that

deg

∏
k∈[l]

(evk,k)∗(Z)

 · l∏
k=0

Xmk(E(k)′)


= deg

(∏
k∈[l]

(evEk)∗Lm−1
ek

 ·Xm−1(E(0)′)

)
·
∏
k∈[l]

deg

(
(evrk)∗Lm−1

m−1−ek ·Xm(E(k)′)

)
,

where E(k)′ is defined at the beginning of this section.

Proof. We will prove the splitting lemma by induction on l. For l = 0 the claim is obviously
true.
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Assume that the lemma is true for l − 1 ∈ N. With the projection formula and since the push-
forward preserves the degree of zero-dimensional varieties, it holds that the degree of∏

k∈[l]

(evk,k)∗(Z)

 ·( l∏
k=0

Xmk(E(k)′)

)

is equal to the degree of

Z ·

(evEl ◦πl0
)
∗

 ∏
k∈[l−1]

(ev′k,k)∗(Z)

( l−1∏
k=0

Xmk(E(k)′)

)× [ (evrl)∗Xm(E(l)′)

] ,

whose degree is equal to that of(evEl)∗
(
πl0
)
∗

 ∏
k∈[l−1]

(ev′k,k)∗(Z)

 ·( l−1∏
k=0

Xmk(E(k)′)

) ·( (evrl)∗Xm(E(l)′)

)
.

For k ∈ [l − 1] define

ev′k,k := (evEk × evrk) ◦ (πl−1
0 × πl−1

k ) : Xm−1(E(0)′)×
l−1∏
k=1

Xm(E(k)′)→ Rm−1 × Rm−1.

Using 1.3.28, it follows that

(evEl)∗

 ∏
k∈[l−1]

(evEk)∗(evrk)∗Xm(E(k)′) ·M0

 and (evrl)∗Xm(E(l)′),

which are subvarieties of Rm, have standard directions. Due to lemma 1.2.32, the first term above
is equal to

(evEl)∗

(
πl0

)
∗

 ∏
k∈[l−1]

(ev′k,k)∗(Z)

 · (Xm0(E(0)′)× · · · ×Xml−1
(E(l − 1)′)

) .

Hence, the prerequisites of lemma 1.2.31 are fulfilled and it follows

deg

∏
k∈[l]

(evk,k)∗(Z)

 ·( l∏
k=0

Xmk (E(k)′)

)
= deg

(evEl)∗

(
πl0

)
∗

 ∏
k∈[l−1]

(ev′k,k)∗(Z)

 ·( l−1∏
k=0

Xmk (E(k)′)

) ·( (evrl)∗Xm(E(l)′)

)
1.2.31

=
∑
s,t

deg

Lm−1
s ·

(evEl)∗

(
πl0

)
∗

 ∏
k∈[l−1]

(ev′k,k)∗(Z)

 ·( l−1∏
k=0

Xmk (E(k)′)

)
·deg

(
Lm−1
t ·

(
(evrl)∗Xm(E(l)′)

))
p.f.
=

∑
s,t

deg

 ∏
k∈[l−1]

(ev′k,k)∗(Z)

 ·
(evEl)

∗Lm−1
s ·Xm−1(E(0)′)×

 ∏
k∈[l−1]

Xm(E(k)′)


· deg

(
(evrl)

∗Lm−1
m−1−t ·Xm(E(l)′)

)
induction

= deg

∏
k∈[l]

(evEk )∗Lm−1
ek

 ·Xm−1(E(0)′)

 · deg
(
(evrk )∗Lm−1

m−1−ek ·Xm(E(k)′)
)
,

where ek is the dimension of Xm(E(k)′). �
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The following notation, which finally allows to state the recursive formula that allows to determine
the number of rational tropical curves of generalized projective degree ∆m(t) passing a given con-
figuration of tropical varieties with standard directions, is based on the notation used in [Vak00],
section 2.

Notation 2.4.4 (F(m, e), F(k), F ′(k))
Let the data E = (t,Ω,Γ) be general, Ω1

E ∈ Ω be the distinguished element “on the left” as before
and let

(i(0), t(0)), . . . , (i(l), t(l))

be a partition of F = (i, t) and set F(k) = (i(k), t(k)) for k ∈ [l]. Set

Nm(F) := Nm(E).

By F(r, e) we refer to the set of data given by

the vector i− εE and t− εr,e + εr,e+E−(m−1).

If the partition F(0), . . . ,F(l) of F is induced by the partition (E(0), . . . , E(l)) of E , remember
that we defined ek = dimXm(E(k)′) for k ∈ [l] and let i′(k) and t′(k) be given by

• i′(k) := i(k) and
• t′(k) := t(k) + εrk,m−1−ek (which has already been defined before),

where the second summand of t′(k) stands for the additional tangency condition Lm−1
m−1−ek imposed

on the leaf xrk of weight rk in Mk in the last lemma. The remaining entries of i′(k) and t′(k) are
induced by Ω(k)′ and Γ(k)′. For k = 0 we set

• i′(0)e := i(0)e+1 + #{ek|ek = e}1≤k≤l +
∑
r t(0)r,e for all e ∈ N \ {E,E − 1},

• i′(0)E := i(0)E+1 + 1 + #{ek|ek = E}1≤k≤l +
∑
r t(0)r,E ,

• i′(0)E−1 := i(0)E − 1 + #{ek|ek = E − 1}1≤k≤l +
∑
r t(0)r,E−1 and

• t′(0) := d0ε1,m−2 (which has already been defined before),

where the terms #{ek|ek = e}, e ∈ [m−1] stands for the additional incidence conditions Lm−1
ek

of
dimension e imposed on the leaf xEk in M0 in the last lemma. The remaining entries are induced
by Ω(0)′ and Γ(0)′, see 2.4.1.

For k = 0, . . . , l set F ′(k) = (i′(k), t′(k)).

Define multinomial coefficients with vector arguments via

(
i

h(0), . . . , h(l)

)
:=

∏
e

(
ie

i(0)e, . . . , i(l)e

)
,(

t

t(0), . . . , t(l)

)
:=

∏
r,e

(
tr,e

t(0)r,e, . . . , t(l)r,e

)
.

The following formula, which allows to count rational tropical curves of generalized tropical de-
gree ∆m(t) which fulfill prescribed incidence and tangency conditions, coincides with the algebro-
geometric counterpart in [Vak00], theorem 2.20.

Theorem 2.4.5
Let 2 ≤ m ∈ Rm. The numbers Nm(F) can be calculated recursively via the formula

Nm(F) =
∑
r,e

r · tr,e ·Nm(F(r, e))

+
∑ ∏

k=1,...,l r
k

Aut(F(1), . . . ,F(l)) · d(t′(0))!
·
(

t

t(0), . . . , t(l)

)
·
(

i− εE
i(0)− εE , . . . , i(l)

)
·Nm−1(F ′(0)) ·

l∏
k=1

Nm(F ′(k))
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where the second sum runs over all partitions (F(0), . . . ,F(l)) of F = (i, t) with d(t′(0)) > 0 (see
2.1.1).

The only initial value that is needed for computing all numbers via this formula is that there
exists exactly one rational tropical curve (counted with multiplicity) of projective degree 1 which
intersects two given general points in R2 (where one point may be a tangency condition in R2/R·e1).

Proof. We want to calculate recursively

Nm(F) =
deg

(∏
(e,j)(evje)

∗Ωje ·
∏

(m,e,j)(evr,e)
∗Γjr,e · M0,I(∆m(t),Rm)

)
(d(t)!)m

.

Let F be induced by E = (t,Ω,Γ), which we assume to be specialized as described at the beginning
of section 2.2. With ek = dim(Xmk(E(k)′) for l = 0, . . . , l, m0 = m− 1 and mk = m for k ∈ [l] it
follows

Nm(F) = Nm(E)

2.4.2
=

∑ (∏l
k=1 r

k
)

l! · (
∏
k∈[l](d(t′(k))!)m

· deg

∏
k∈[l]

(evk,k)∗(Z)

(Xm−1(E(0)′)×
l∏

k=1

Xm(E(k)′)

)
2.4.3
=

∑ (∏l
k=1 r

k
)

l! · (
∏
k∈[l](d(t′(k))!)m

· deg

∏
k∈[l]

(evEk )∗Lm−1
ek

 ·Xm−1(E(0)′)


· deg

∏
k∈[l]

(
(evrk )∗Lm−1

m−1−ek ·Xm(E(k)′)
)

2.1.3, 2.4.4
=

∑ ∏
k=1,...,l r

k

Aut(F(1), . . . ,F(l))
·N ·

Nm−1(F ′(0)) ·
∏l
k=1 Nm(F ′(k))

d(t′(0))!
,

where the sum runs over all partitions all ordered partitions (E(0), . . . , E(l)) of E and over all
partitions F(0), . . . ,F(l) of F , respectively, and where

N :=

(
t

t(0), . . . , t(l)

)
·
(

i− εE
i(0)− εE , . . . , i(l)

)
.

The factor N appears because it is the number of possibilities to distribute the incidence conditions
of dimension e (except Ω1

E) and tangency conditions of dimension e and weight r onto the l + 1
components of the partition F(0), . . . ,F(l). We divide by Aut(F(1), . . . ,F(l)) to make sure that
we count each curve in Xm(E) only once.

Take a closer look at the case that the partition F(0), . . . ,F(l) implies d(t(0)′) = 0, i.e. the curve
(C0, h0) on the left has projective degree 0 and h(C0) is a point on an unbounded end of h(C) with
direction −e1. Since E was chosen to be general, all curves that appear in Xm(E) are trivalent.
Hence, the partition (F(0), . . . ,F(l)) of F may only have a non-zero contribution to Nm(F) if the
curve (C ′0, h

′
0) fulfills only one incidence and one tangency condition, i.e. i(0) = εE , t(0) = εr,e for

some (r, e) ∈ N2 with tr,e > 0 and l = 1.

We conclude that

• dim(Xm−1(E(0)′)) = e+ E − (m− 1),
• Nm−1(F(0)′) = 1,
• i(1)′ = i− εE ,
• t(1)′ = t− εr,e + εr,e+E−(m−1) and hence
• Nm(F(1)′) = Nm(F(r, e)).

The claim follows due to (
t

t(0), t(1)

)
= tr,e and

(
i− εE

i(0)− εE , i(1)

)
= 1.

�



CHAPTER 3

Enumerative geometry of elliptic tropical curves in Rm

We will give the set PI(∆,Rm) of elliptic I-marked parametrized curves of degree j : ∆ → Rm a
polyhedral structure that reflects the combinatorial types. Afterwards, we will introduce a notion
of a well-spaced elliptic curve, which is oriented at the known sufficient and necessary condition
on the realizability of elliptic curves. The setM1,I(∆,Rm) of well-spaced elliptic I-marked curves
of degree ∆ in Rm is a pure-dimensional subcomplex of PI(∆,Rm). We will show that a certain
dense open subset M1,I(∆,Rm)reg of M1,I(∆,Rm) consisting only of regular elliptic curves (i.e.
they contain only vertices of genus zero and an “honest” loop) is a tropical variety.

Finally, we prove an invariance statement about elliptic curves: The number of well-spaced elliptic
curves passing a general configuration of shifted tropical fans in Rm does not depend on the position
of the fans.

3.1. An abstract polyhedral complex parameterizing elliptic tropical curves

Definition 3.1.1 (Parameter space PI(∆,Rm) of elliptic curves of degree ∆ in Rm)
We define PI(∆,Rm) as the set of elliptic parametrized I-marked curves (C, h) of degree ∆ in Rm
which fulfill the following condition: If C is elliptic, there exists a flag segment (p,E) ∈ FS(C) in
the loop of C (i.e. E ⊂ CL) which fulfills v(p,E) 6= 0. In this case, h|E is injective. Elliptic means
that either C has genus one and only points of genus zero or C is rational and has precisely one
point of genus one. If C is elliptic, CL contains at least two different edges because of the condition
that h|E is injective on at least one bounded edge E ⊂ CL in the loop of C. If I = [n], we denote
this parameter space also by Pn(∆,Rm).

The aim of this section is to prove the following proposition. Remember that for a combinatorial
type α we denote by P(α) the set of curves in PI(∆,Rm) which have combinatorial type α and by

P(α) the set of curves whose combinatorial type is equal to or a specialization of α.

Proposition 3.1.2
({P(α)},PI(∆,Rm), {jl,dα }), where α runs over the combinatorial types in PI(∆,Rm) and the charts
jl,dα are defined later on in 3.1.9, is an abstract polyhedral complex whose polyhedral structure is
given by the combinatorial types. It is in general not pure-dimensional.

By abuse of notation, we denote the abstract polyhedral complex ({P(α)},PI(∆,Rm), {jl,dα }) by
PI(∆,Rm), too.

Example 3.1.3 (PI(∆,Rm) not pure-dimensional)
Let ∆ = {a, b, c, d} and let the degree j : ∆ → R2 be given by j(a) = (−1, 1,−1), j(b) = (2, 1, 0),
j(c) = (1,−2,−1), j(d) = (−2, 0, 2). The curves (C1, h1), (C2, h2) in the following figure are
elements of P1(∆,R3). Denote their combinatorial types by α1 and α2, respectively. Since both
curves have only 3-valent vertices of genus zero, their combinatorial types are maximal and they
both lie in facets of P1(∆,R3).

The dimension of P(α1) is 5: C1 is determined by the position of the unique marked point in R3,
the length of the unique bounded edge outside the loop and by the length of the path around the
loop. However, the dimension of P(α2) is 6 because C2 has an additional bounded edge compared
to C1.

45
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The reason why the dimension of the two maximal cells differ is the following. If the direction
vectors a1, a2, a3, a4 of the edges in the loop span R3 as in the case of C1, they must fulfill three
conditions to close the loop, one in each coordinate:

4∑
i=1

λiai = 0 ∈ R3.

If the direction vectors b1, b2, b3 of the edges in the loop span a space of dimension two as in the case
of C2, these edges must only fulfill two conditions to close the loop. Hence, C2 has an additional
degree of freedom.

xa xb

xc
xd

(1, 0, 0)

(−1,−1, 0)
(0, 1,−1)

x1

(−2, 1, 1)

xa xb

xd

xc

(1, 2,−1)

(0,−1, 0)
(1, 1,−1)

x1

(−1, 1, 1)

Figure 1. The curves (C1, h1) (left) and (C2, h2) (right) from example 3.1.3. The
given vectors are the direction vectors of the bounded edges.

This example can be generalized: Let (C1, h1), (C2, h1) ∈ PI(∆,Rm) be curves with maximal
combinatorial types α1 and α2. Let L1, L2 be the linear spaces spanned by the direction vectors
of flags in loop of C1 and C2, then

dim P(α1)− codimL1 = dim P(α2)− codimL2.

We present the idea why this statement is true:

Let α1 = (Γ1, v1) and α2 = (Γ2, v2), where Γ1 and Γ2 are the abstract combinatorial types. Then
Γ1 and Γ2 are both elliptic and have the same number of inner edges, namely #(I∪̇∆), and there
are no conditions on the edge lengths. However, the combinatorial types α1 and α2 fulfill that the
loop is closed, which imposes dimL1 and dimL2 conditions on the edge lengths, respectively. It
follows dim P(α1) + dimL1 = dim P(α2) + dimL2 and the stated result follows.

Lemma 3.1.4
A curve (C, h) ∈ PI(∆,Rm) is uniquely determined by C, the degree j : ∆→ Rm, the position of
one root vertex h(xi), i ∈ ∆, and the non-zero direction vector of a flag in the loop of C (if such
a flag exists). In other words: Let (C, h), (C, g) ∈ PI(∆,Rm) and assume that there exists i ∈ ∆
with h(xi) = g(xi). If C is regular, assume moreover that there exists (p,E) ∈ F(C) with E ⊂ CL
bounded and 0 6= v(C,h)(p,E) = v(C,g)(p,E). Then it holds h = g.

Proof. If C is non-regular, the first Betti number of supp(C) is zero and (C, h) is uniquely
determined by C and h(xi), see remark 1.3.24. So let us assume that C is regular. Then there
exists a flag (p,E) with E ⊂ CL and d := v(C,h)(p,E) = v(C,g)(p,E) 6= 0. We cut the edge E
in the middle, set the length of the two new edges to infinity. We give the arising topological
space structures of parametrized I-marked curves (C ′, h′) and (C ′, g′) that are induced by (C, h)
and (C, g). (C ′, h′) and (C ′, g′) are rational curves and elements of M0,I(∆

′,Rm) with ∆′ =
∆∪̇{A1, A2}, where the direction of the leaves xA1

and xA2
labeled by A1 and A2 is given by

dA1 = d and dA2 = −d. Since an element (D, f) ∈M0,I(∆
′,Rm) is uniquely determined by D and

the image of the marked point xi under f , see above, we conclude h′ = g′ and therefore h = g. �

Example 3.1.5
Here is an example that shows that a degree j : ∆ → Rm and an abstract combinatorial type
Γ are in general not sufficient to determine a combinatorial type (Γ, v) uniquely. Let the degree
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j : ∆ = {1, 2, 3} → R2 be given by j(1) = (1, 2), j(2) = (2,−1) and j(3) = (−3,−1). In figure
2, h1(C1) and h2(C2) are shown for two curves (C1, h1), (C2, h2) ∈ P∅(∆,R2) which fulfill that C1

and C2 have the same abstract combinatorial type.

(−3,−1)

(1, 1)

(1, 2)

(0,−1)

(2,−1)2
(−1, 0)

h1(C1)

(−3,−1)

(2, 1)

(1, 2)

(1,−1)

(2,−1)(−1, 0)

h2(C2)

Figure 2. The curves C1 and C2 have the same abstract combinatorial type and
the combinatorial types of (C1, h1), (C2, h2), which have the same degree, differ.

Let β ≤ α be combinatorial types in PI(∆,Rm) and let [E] ∈ E(β) be an edge. We will show
that the edge [E] corresponds to a unique edge eαβ([E]) ∈ E(α) of α - at least if α is regular. This

correspondence will allow to use the edge lengths as coordinates for the polyhedral charts jl,dα on

P(α) (where P(α) denotes the set of curves whose combinatorial type is finer than α).

Notation 3.1.6
Let α be a combinatorial type in PI(∆,Rm) and (C, h) ∈ P(α). We define Ẽ(C) ⊂ E(C) as the
set containing all edges of C except E1, E2 ∈ E(C) if E1 and E2 are the only edges in the loop of

C and if they fulfill ω(E1) = ω(E2) (i.e. E1 ∪ E2 = CL). Ẽ(α) is defined analogously.

Lemma 3.1.7
Let β ≤ α be combinatorial types of elliptic I-marked curves and let (C, h), (D, g) ∈ PI(∆,Rm)
be of type α and β, respectively, such that (D, g) ≤ (C, h). Denote the projection map by π :
supp(C)→ supp(D). Then the map

eαβ : Ẽ(β) ↪→ E(α)

[E] → [π−1(E◦)]

is well-defined, injective and does not depend on the choice of (C, h), (D, g). Moreover, if there
are only two edges E1, E2 in the loop of D,

eαβ([E1]) := {[π−1(E◦1 )], [π−1(E◦2 )]}
does not depend on the choice of (C, h) and (D, g).

Proof. Lemma 1.3.11 states that f1(E) = f2(E) if f1, f2 : (C, h)→ (C ′, h′) are combinatorial

homeomorphisms and if E ∈ Ẽ(C). In order to prove the lemma, it remains to show that, for
specializations (D1, g1), (D2, g2) ≤ (C, h) of (C, h) with projection maps πi : supp(C)→ supp(Di),

it holds π1(E) = π2(E) for all edges E ∈ Ẽ(C) which are not contracted by π1 or π2.

We prove this statement via the following, where we denote the set of edges that is contracted by
πi by Ei: If f : D1 → D2 is a combinatorial morphism, it holds

π−1
1 (E◦D1

) = π−1
2 (f(E◦D1

))

for all edges ED1 ∈ Ẽ(D1) and

π−1
1 (((E1

D1
)◦) ∪ ((E2

D1
)◦)) = π−1

2 (f((E1
D1

)◦) ∪ f((E2
D1

)◦))

if E1
D1

and E2
D1

are the only edges in the loop of D1, i.e. E1
D1
∪ E2

D1
= (D1)L. Here is the proof:

Let E ∈ E(C) \E1, hence E is not contracted by π1 and π1(E) ∈ E(D1) is an edge of D1. Assume
first that E is an edge outside the loop of C. Then supp(D1) \ π1(E◦) and supp(D2) \ f(π1(E◦))
induce the same partition of I = I1∪̇I2. Also supp(C)\E◦ = supp(C)\π−1

1 (π1(E◦)) and supp(C)\
π−1

2 (f(π1(E◦))) induce the same partition I = I1∪̇I2. But that means that E◦ = π−1
2 (f(π1(E◦)))

and E is not contracted by π2, i.e. E ∈ E(C) \E2.
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Assume now that E ∈ E(C) \ E1 is an edge in the loop of C. Since the loop of a parametrized
curve consists of more than one edge, there exists an edge ED1 6= π1(E) in the loop of D1. As in
the previous case,

supp(D1) \ (π1(E◦) ∪ E◦D1
) and supp(D2) \ (f(π1(E◦)) ∪ f(E◦D1

))

induce the same partition of I (because combinatorial morphisms are homeomorphisms that respect
the labeling of the leaves), so do therefore

supp(C) \ (E◦ ∪ π−1
1 (E◦D1

) and supp(C) \ (π−1
2 (f(π1(E◦))) ∪ π−1

2 (f(E◦D1
))).

It follows that

{E◦, π−1
1 (E◦D1

)} = {π−1
2 (f(π(E◦)), π−1

2 (f(E◦D1
))}

for all edges ED1
6= π(E) in the loop of D1, which implies that E ∈ E(C) \ E2. If the loop of D1

contains more than two edges, it follows E◦ = π−1
2 (f(π(E◦))). �

Definition 3.1.8 (Path)
Let p, q ∈ supp(C). A path from p to q with n ∈ N flag segments is an n-tuple of flag segments

((p1, E1), . . . , (pn, En))

such that

• p = p1,
• (pi+1, Ei) is a flag segment for all i ∈ [n] where we set pn+1 := q,
• for any i, j ∈ [n] with i 6= j the set Ei ∩Ej is either empty or a single point, i.e. the edges

of the path overlap only in vertices.

The length of a path ((p1, E1), . . . , (pn, En)) is defined as
∑n
i=1 Length(Ei). Denote the abstract

combinatorial type of C by Γ. A path in Γ with n flags is an n-tuple of flags ([F1], . . . , [Fn]) with
[Fi] ∈ F(Γ) such that for all C ∈ Γ there exist FCi ∈ [Fi] ∩ F(C) and a path (FC1 , . . . , F

C
n ) in C.

A path around the loop of C is a path such that the union of the edges that appear in the path is
equal to the loop CL of C. A path around the loop of Γ is a path such that a corresponding path
in C is a path around a loop of C. If α = (Γ, v) is a combinatorial type, a path in α is defined as
a path in Γ.

We will construct polyhedral charts on PI(∆,Rm) on the set P(α) for every combinatorial type
α in PI(∆,Rm). The coordinates will be given, as in the rational case, by the edge lengths and
the position of a root vertex xi in Rm, i ∈ I. In contrast to the rational case, we have to encode
additionally the condition that the loop of the curve is closed, i.e. running around the image of the
loop yields the zero vector. This will be done via the kernel of a linear map.

Construction 3.1.9 (P(α), jl,dα )
Let α be the combinatorial type of a curve in PI(∆,Rm). Define lα ∈ N as the number of (bounded)
edges inside the loop of α, bα ∈ N as the number of bounded edges outside the loop. Both numbers
may be zero.

Let l : {[E] ∈ E(α)|[E] bounded} → [bα + lα] be a bijective map with l([E]) ≤ lα if [E] ∈ E(α) is
an edge inside the loop of α, i.e. l is a labeling of the bounded edges of α. Choose l in a way such
that there exist [pi] ∈ V(α) such that

(([p1], l−1(1)), . . . , ([plα ], l−1(lα)))

is a path around the loop of α, i.e. l respects the order of the edges in the loop of α. Define
[Ei] := l−1(i) for i ∈ [lα + bα].

Using the map from the previous lemma, the labeling l induces a labeling of the edges of β for
all combinatorial types β ≤ α, where an edge in the loop of β might get two labels if there are
precisely two edges in the loop of β. Hence, we get a labeling of the edges of all (C, h) ∈ P(α).

For (C, h) ∈ P(α), we define

u(C,h) ∈ Rbα+lα
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as the vector whose i-th coordinate is given by the length of the edge of C with label i if such an
edge exists. (Remember that we labeled only bounded edges by l. Otherwise the i-th coordinate
is set to zero. Note that if E ∈ E(C) has two labels, it is an edge in the loop of C and there is
exactly one other edge E′ in the loop of C which has the same labels. In this case, E and E′ have
the same length and weight. Hence, u(C,h) is well-defined.

Choose d ∈ I and define the map

jl,dα : P(α) → Rbα+lα × Rm

(C, h) 7→ (u(C,h), h(xd)),

where xd is the leaf of C with label d ∈ I and mapped by h to a point. jl,dα maps a curve onto its
edge lengths and the position of a root vertex xd.

In order to encode the condition that the loop is closed, we define the map

Alα : Rbα+lα → Rm

ei 7→

{
ω(Ei) · v([pi], [Ei]), if i ∈ [lα],

0, else,

where ei is the i-th standard unit vector in Rlα+bα (i.e. Alα(ei) is the weighted direction vector of
the flag ([pi], [Ei]) in the loop of α if i ∈ [lα]) and where (([p1], [E1]), . . . , ([plα ], [Elα ])) is the path
around the loop from above in the definition of the labeling l : E(α)→ [lα + bα].

Lemma 3.1.10
Let α be a combinatorial type in PI(∆,Rm), define

V lα := ker(Alα) ∩ Rlα+bα
≥0 and V lα,+ := ker(Alα) ∩ Rlα+bα

>0 .

Then the map

jl,dα : P(α)→ Rlα+bα × Rm

is injective with

jl,dα (P(α)) = V lα × Rm and jl,dα (P(α)) = V lα,+ × Rm,
where d ∈ I and l : E(α)→ [lα + bα] is chosen as described in the construction above.

Proof. Assume that there exist (D1, h1), (D2, h2) ∈ P(α) such that

jl,dα (D1, h1) = jl,dα (D2, h2).

This means that edges in D2 and D1 that have the same label also have the same length and that
the root vertex xd has the same image under h1 and h2. Denote the combinatorial type of (Di, hi)
by βi, i ∈ {1, 2}. Since the i-th coordinate of jl,dα (D1, h1) is zero if and only if the i-th coordinate
of jl,dα (D2, h2) is zero, in order to construct β1 and β2 from α the same subset of edges of α is
contracted. Hence, D1 and D2 have the same combinatorial type β = β1 = β2. Due to lemma
3.1.4, we conclude (D1, h1) = (D2, h2).

Next, we study the image of jl,dα . Since edge lengths are greater than zero and since the loop of an
elliptic curve is “closed”, we get

jl,dα (P(α)) ⊂ V lα × Rm and jl,dα (P(α)) ⊂ V lα,+ × Rm.

So let us assume that (u, p) ∈ V lα × Rm and let us construct a parametrized curve (D, g) with
jl,dα (D,h) = (u, p):

Let α be a combinatorial type with underlying abstract combinatorial type Γ and direction vectors
v : F(α) → Rm and let C be an I∪̇∆-marked curve of combinatorial type Γ whose edge labeled
by i ∈ [lα + bα] has length ui if ui is non-zero. Denote the vertex incident to the leaf xd by
vd ∈ V(C). Choose the remaining edge lengths arbitrarily. Define D as the (I ∪∆)-marked curve
that comes from C by contracting the edges of C which are labeled by i ∈ [lα + bα] if ui = 0
(see construction 1.3.7), and denote the projection map by π : supp(C) → supp(D). Define the
morphism g : D → Rm by setting g(xd) = p and v(D,g)(π(q), π(E)) = v(q, E) for all (q, E) ∈ F(C)
such that E is not contracted by π. Since morphisms are locally affine Z-linear, this data is
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sufficient to define g : supp(D) → Rm. If the first Betti number of supp(C) is zero, there is only
one path from vd ∈ supp(D) to q ∈ supp(D) and g is well-defined. If the first Betti number of
supp(D) is one, there can be two paths from vd ∈ supp(D) to q ∈ supp(D). However, u ∈ ker(Alα)
assures that the loop is closed, i.e.

0 =
∑

Length(E) · ωD(E) · v(p,E) ∈ Rm,

where the sum runs over all flags (p,E) ∈ F(C) that appear in the path around the loop of C that
is used to define Alα (which is done in the construction above). Hence, g(q) is well-defined for all
q ∈ supp(D). Since the contraction of an edge respects the balancing condition and since α is a
combinatorial type of tropical curves, it follows that g is a morphism. (D, g) has combinatorial
type α if and only if π contracts no edges, i.e. ui > 0 for all i ∈ [bα + lα]. �

Remark 3.1.11
Let α1, α2 be combinatorial types in PI(∆,Rm) with P(α1)∩P(α2) 6= ∅. Then it is in general not

true that there exists a combinatorial type β with P(α1) ∩ P(α2) = P(β). Here is an example:

Let the degree j : ∆ = [8]→ R2 be given by

j(1) := (−1, 2), j(2) := (−1,−2), j(3) := (0, 1), j(4) := (0, 1),

j(5) := (0,−1), j(6) := (1, 0), j(7) := (0, 1), j(8) := (0,−1).

Figure 3 shows two curves (C1, h1), (C2, h2) ∈ P{a}(∆,R2) in the first row. We denote their
combinatorial types by α1 and α2. The only difference between the two combinatorial types is
that the labels x4 and x7 are exchanged. In the second row two common specializations (D1, g1),
(D2, g2) ∈ P{a}(∆,R2) of (C1, h1) and (C2, h2) are shown whose combinatorial types differ and are

both maximal in P(α1) ∩ P(α2).

The maximality of the two combinatorial types can be seen by running around the loop of C1 and
C2 in both directions starting at leaf x1 and, when we arrive at leaves whose labelings i1, i2 differs
in the two curves C1 and C2, we contract in both curves precisely those edges that lie between the
two leaves labeled by i1 and i2.

Remark 3.1.12
Let α1, α2 be combinatorial types in PI(∆,Rm). If P(α1)∩P(α2) 6= ∅, there exist two combinatorial
types β1, β2 (β1 = β2 is allowed) that fulfill

P(α1) ∩ P(α2) = P(β1) ∪ P(β2).

β1 and β2 correspond to the two “directions” of the loop in which we can run around it. We do
not prove this statement because we do not need it in the following.

Lemma 3.1.13
Let β ≤ α be combinatorial types in PI(∆,Rm) of curves (D, g) ≤ (C, h). Let lα be a labeling of
the edges of α, lβ be a labeling of the edges of β with the properties of construction 3.1.9. Moreover

let dα, dβ ∈ ∆. Then the maps j
lβ ,dβ
β ◦ (jlα,dαα )−1 and jlα,dαα ◦ (j

lβ ,dβ
β )−1 are integer affine linear

where defined.

Proof. The coordinates of the maps jlα,dαα and j
lβ ,dβ
β are the edge lengths and the position

of a root vertex. Due to corollary 3.1.7 an edge of β corresponds to a unique edge of α - at least if
the loop of β does not contain precisely one edge. However, in this latter case, the lengths of the
two corresponding edges in α coincide. Moreover, in P(α) the position of each marked point can
be expressed as the position of the leaf xdα labeled by dα ∈ I plus a linear combination of direction
vectors of the flags (times the weight of the underlying edge) with edge lengths as coefficients. In
particular, the position of the leaf xdβ is a linear function of the edge lengths and of the position
of the leaf xdα , and vice versa. �

Construction 3.1.14 (Topology on PI(∆,Rm))

For all combinatorial types α in PI(∆,Rm) we endow P(α) with the coarsest topology such that

the maps jl,dα : P(α) → Rlα+bα × Rm are continuous. We endow PI(∆,Rm) with the topology
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Figure 3. The combinatorial types of the curves in the lower row are different
but both are maximal common specializations of the combinatorial types of the
curves in the first row.

induced by the one on the sets P(α) ⊂ PI(∆,Rm). Then a subset U ⊂ PI(∆,Rm) is open if and

only if jl,dα (U ∩ P(α)) is open in im(jl,dα ) = V lα × Rm for all combinatorial types α, labelings l of
the bounded edges of α and d ∈ ∆. From now on, we consider PI(∆,Rm) as a topological space
with this topology.

Proof of 3.1.2. As topology on PI(∆,Rm) we choose the one from the construction above.
Then the claim follows from lemma 3.1.10, lemma 3.1.13 and example 3.1.3. �
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3.2. The pure-dimensional abstract polyhedral complex M1,I(∆,Rm)

Well-spaced elliptic curves. We will define a polyhedral subcomplex of PI(∆,Rm), the
subcomplex M1,I(∆,Rm) of well-spaced elliptic curves. The definition of well-spacedness is in-
spired by the known sufficient and necessary conditions on realizability of elliptic curves in Rm. In
order to recall briefly what conditions are known, we need the following notation.

Notation 3.2.1 (Linear spaces related to the loop of a curve, dC(p))
Let α be the combinatorial type of an elliptic curve (C, h) ∈ PI(∆,Rm).

a) As (C, h) is elliptic, for each point p ∈ supp(C) \ CL there exists a unique vertex vp ∈ CL
and a unique path Pp = ((pi, Ei))i∈[np] from p to vp such that Ei 6⊂ CL for all i ∈ [np],
i.e. the path does not pass the loop. The distance dC(p) between p and CL is defined as
the length of the path Pp. For all vertices p ∈ CL ∩V(C) in the loop of C, set dC(p) = 0,
and for all points p ∈ CL which are no vertices, set dC(p) = −1, which makes dC(p)
well-defined for all p ∈ supp(C). If no confusion can occur, we just write d(p).

b) Let d ∈ R. By V (C, h)d we denote the linear space that is spanned by the direction
vectors of the flag segments (p,E) ∈ FS(C) with dC(p) ≤ d, i.e. V (C, h)d is spanned by
the direction vectors of all flag segments whose distance to the loop is at most d. Moreover,
we define V (C, h)<d as the linear space that is spanned by the direction vectors of flag
segments (p,E) ∈ FS(C) with dC(p) < d. By L(C, h)d, L(C, h)<d, we denote the lattices
in V (C, h)d and V (C, h)<d that are spanned by the respective weighted direction vectors
ω(E) ·v(p,E). Note that V (C, h) := V (C, h)<0 is the linear space spanned by the direction
vectors of the flags in the loop. V (C, h)0 is the linear space spanned by the direction vectors
of the flags in and at the loop.

c) We define V (α)0, V (α)<0, V (α), L(α)0, L(α)<0 as the respective spaces for the combina-
torial type α.

If no confusion can occur, we leave out α or (C, h) and just write Vd, V<d, Ld and L<d.

xa xb

xd

xc

(0,−1, 0)
(1, 1,−1)

x1

(−1, 1, 1)

Figure 4. The curve C3 from example 3.2.2. The given vectors are the direction
vectors of the bounded edges.

Example 3.2.2 (Nomenclature around the loop of an elliptic curve)
As example of the above definitions, we look at the curves in example 3.1.3. The direction vectors
of edges in the loop of C1 span R3 and the direction vectors of edges in the loop of C2 span the
2-dimensional space V (C2, h2)<0 = 〈(1, 0,−1), (0,−1, 0)〉. It holds (1, 2,−1) ∈ V (C2, h2)<0,

V (C2, h2)<0 = V (C2, h2)0 and V (C1, h1)<0 = V (C1, h1)0 = R3.

Let us assume that the length of the bounded edge E of C2 with direction vector (1, 2,−1) that is
outside the loop is d ∈ R>0. We get

V (C2, h2)<d = V (C2, h2)0 and V (C2, h2)d = R3.

However, if the length of E becomes 0 and (C2, h2) degenerates into a curve (C3, h3), we get

V (C3, h3)<0 ( V (C3)0 = R3.

The curve C3 is shown in figure 4.
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Notation 3.2.3 (VH ,dH ,FH ,Vd,Pd,FSd)
Let (C, h) ∈ PI(∆,Rm) and H ⊂ Rm a hyperplane. We define

a) the vertices of distance d ≥ 0 to the loop as Vd(C, h) := {v ∈ V(C)|d(v) = d},
b) the points of distance d ≥ 0 to the loop as Pd(C, h) := {p ∈ supp(C)|d(p) = d},
c) the flag segments of distance d ≥ 0 to the loop as

FSd(C, h) := {(p,E) ∈ FS(C)|p ∈ Pd(C, h), d(q) ≥ d ∀ q ∈ E},

d) the vertices of (C, h) closest to the loop at which a flag runs out of H as

VH(C, h) := {v ∈ supp(C)|V (C, h)<d(v) ⊂ H, ∃(v,E) ∈ FSd(v)(C) : v(v,E) /∈ H)},

e) the distance dH(C, h) of H to the loop of C as the distance of a vertex closest to the loop
at which a flag runs out of H, i.e. if VH(C, h) 6= ∅, we define dH(C, h) := d(v) for an
arbitrary vertex v ∈ VH(C, h), otherwise we set dH(C, h) = 0,

f) the flags closest to the loop which run out of H as

FH(C, h) := {(p,E) ∈ F(C, h)|d(p) = dH(C, h), v(p,E) /∈ H},

If it is clear which curve is referred to, we just write VH , dH ,FH , Vd, Pd and FSd.

If Γ is the abstract combinatorial type of C and if α is the combinatorial type of (C, h), we define
V0(Γ), V0(α), P0(Γ), P0(α), FS0(Γ) and FS0(α) analogously and write V0, P0 and FS0 if no
confusion can occur.

Remark 3.2.4
Let (C, h) ∈ PI(∆,Rm). Note that dH(C, h) > 0 if and only if V (C, h)0 ⊂ H and 〈v(F )|F ∈
F(C)〉 6⊂ H.

Remark 3.2.5 (On the realizability of elliptic tropical curves)

a) In [Spe07], David Speyer gives a sufficient condition for the realizability of an elliptic
curve h : C → Rm for arbitrary m ∈ N≥2: If

#VH ≥ 2

for all hyperplanes H ⊂ Rm with V (C, h)<0 ⊂ H (i.e. there are at least two vertices closest
to the loop at which a flag runs out of H), then (C, h) is realizable.

b) In [Spe07], David Speyer also proves a partial converse: If (C, h) is 3-valent and realizable
in characteristic zero, then #VH ≥ 2 for all hyperplanes H ⊂ Rm with V (C, h)<0 ⊂ H.

c) We can reformulate Speyer’s results in an alternative way: 3-valent elliptic curves are
realizable in characteristic zero if and only if

#FH > 2

for all hyperplanes H ⊂ Rm with dH > 0. This can be seen as follows:
Assume that #VH ≥ 2 and that (C, h) is 3-valent. Since (C, h) is 3-valent and balanced

it is true that all direction vectors of flags at the loop lie in H if and only if the direction
vectors of all flags in the loop lie in H, i.e. V (C, h) ⊂ H and V (C, h)0 ⊂ H are equivalent.
Moreover, if #VH ≥ 2, there exist at least two different vertices v1, v2 ∈ VH at which
at least one edge runs out of H, i.e. there exist flags (v1, E1), (v2, E2) ∈ F(C) that fulfills
v(v1, E1), v(v2, E2) /∈ H. By definition of VH , the direction vectors of all flags on the way
from the loop to v1 and v2 lie in H. By the balancing condition, it follows that there are
at least two flags that, seen from loop, lie behind each of the vertices v1 and v2 and whose
direction vectors are not contained in H, i.e. #FH ≥ 4 > 2. Now the other direction: If
C is 3-valent, at most two edges can run out of H at v ∈ VH . Hence, it follows from
#FH > 2 that there exists at least two vertices at which flags run out of H, which means
#VH ≥ 2.
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d) In [Kat10], Eric Katz shows a necessary condition on an elliptic curve to be realizable:
If (C, h) is realizable and #VH = 1 for a hyperplane H ⊂ Rm with V (C, h)<0 ⊂ H (i.e.
there exists a unique vertex which is closest to the loop at which a flag runs out of H),
then the unique vertex v ∈ VH is at least 4-valent.

e) An elliptic curve which fulfills #FH > 2 for all hyperplanes H ⊂ Rm with dH > 0 also
fulfills Katz’ necessary realizability condition: If #VH = 1 and #FH > 2, there are at
least three different edges E1, E2, E3 adjacent to the unique vertex v ∈ VH that fulfill
v(v,Ei) /∈ H, i ∈ [3]. Hence, the vertex v is at least 4-valent.

We take our reformulation of Speyer’s sufficient and necessary condition on the realizability of a
3-valent elliptic curve stated in the remark above as definition of well-spacedness.

Definition 3.2.6 (Well-spacedness, M1,I(∆,Rm))
We call (C, h) ∈ PI(∆,Rm) well-spaced if

#FH > 2

for all hyperplanes H ⊂ Rm with dH > 0.

We define the moduli space of elliptic I-marked parametrized curves of degree ∆ in Rm by

M1,I(∆,Rm) := {(C, h) ∈ PI(∆,Rm)|(C, h) is well-spaced}.
If I = [n], we also write M1,n(∆,Rm).

Remark 3.2.7
By the previous remark, it follows that well-spaced elliptic curves satisfy Eric Katz’ necessary
realizability condition. Moreover, elliptic curves which are realizable according to David Speyer
are well-spaced, and 3-valent curves are well-spaced if and only if they are realizable in characteristic
0.

Remark 3.2.8
Let (C, h) ∈ PI(∆,Rm), H ⊂ Rm be a hyperplane with dH > 0 and v ∈ VH , i.e. there exists
an edge that is adjacent to the vertex v that fulfills that the direction vector v(v,E) of the flag
(v,E) is not contained in the hyperplane H. Due to the balancing condition, there are at least
two different edges E1, E2 ∈ E(C) adjacent to v which fulfill v(v,E1), v(v,E2) /∈ H. It follows that
#FH > 1. Hence, demanding in the definition of well-spacedness that

#FH > 0 or #FH > 1

would be an empty condition.

Polyhedral structure on M1,I(∆,Rm). In order to give M1,I(∆,Rm) the structure of an
abstract polyhedral complex, we refine the definition of the combinatorial type.

Definition 3.2.9 (Fine combinatorial type of a well-spaced curve, specializations, M1(Γ, v,≤))
A fine combinatorial type is a triple (Γ, v,≤) where (Γ, v) is a combinatorial type and ≤ is a
total preorder on the set of vertices of Γ (i.e. ≤ is a total, reflexive and transitive) that fulfills the
following condition for any vertex v ∈ V(Γ):

If a path Pv from v to the loop of Γ (see definition 3.2.1) passes a vertex w, the relation w ≤ v is
fulfilled.

If C is a tropical curve of abstract combinatorial type Γ, the function d : V(C) → R≥0, which
indicates the distance of a vertex to the loop, defines a total preorder ≤d on V(Γ) that fulfills the
condition from above for all [v], [w] ∈ V(Γ):

[v] ≤d [w] :⇔ d(v) ≤ d(w).

If (Γ, v) is the combinatorial type of (C, h) ∈ PI(∆,Rm), we call (Γ, v,≤d) the fine combinatorial
type of (C, h).

We say that (Γ1, v1,≤1) is a specialization of (Γ2, v2,≤2) and write (Γ1, v1,≤1) ≤ (Γ2, v2,≤2) if

• (Γ1, v1) is a specialization of (Γ2, v2) and
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• [v] ≤2 [w] implies π([v]) ≤1 π([w]) for all [v], [w] ∈ V(Γ2) where π : V(Γ2)→ V(Γ1) is the
map from definition 1.3.21), i.e. the specialization process respects the total preorder on
the vertices.

By M1(Γ, v,≤) we denote the subset of PI(∆,Rm) that contains precisely the curves of fine com-

binatorial type (Γ, v,≤). By M1(Γ, v,≤) we denote the set of curves whose fine combinatorial type
is a specialization of (Γ, v,≤).

The aim of this section is to prove the following theorem.

Theorem 3.2.10
The moduli space M1,I(∆,Rm), where the degree is given by j : ∆ → Rm, together with the
polyhedral structure given by the fine combinatorial types, is a pure-dimensional subcomplex of
PI(∆,Rm) of dimension #∆ + #I +m− dim〈j(∆)〉.

We split the proof of this statement into several propositions and lemmata.

Proposition 3.2.11
The set {M1(Γ, v,≤)} of closed subsets of M1,I(∆,Rm), where (Γ, v,≤) runs over all fine com-
binatorial types of curves in M1,I(∆,Rm), defines a polyhedral structure on M1,I(∆,Rm) as
subcomplex of PI(∆,Rm).

The key to the proof is the following lemma which implies that⋃
{M1(Γ, v,≤)} =M1,I(∆,Rm),

where the union is taken over all fine combinatorial types (Γ, v,≤) of curves in M1,I(∆,Rm).

Lemma 3.2.12
Let (C, h) ∈ M1(Γ, v,≤) be well-spaced. Then a curve (D, g) ∈ M1(Γ, v,≤), whose fine combina-
torial type (ΓD, vD,≤D) is a specialization of (Γ, v,≤), is also well-spaced.

Proof. Let (D, g) ∈ PI(∆,Rm) such that its fine combinatorial type (ΓD, vD,≤D) is a
specialization of (Γ, v,≤). Assume that (D, g) is not well-spaced. Then there exists a hyper-
plane H ⊂ Rm with dH(D, g) > 0 such that FH(D, g) = 2, in particular V (D, g)0 ⊂ H. Let
π : supp(C)→ supp(D) be the projection map. Due to

V (C, h)0 ⊂ V (D, g)0 ⊂ H
we know that either

#FH(C, h) > 2 or dH(C, h) = 0

because (C, h) is well-spaced.

Assume first that dH(C, h) = 0, which means that either 〈j(i)|i ∈ ∆〉 ⊂ H or V (C, h)0 6⊂ H, where
j(i) is the weighted direction vector of the leaf labeled by i ∈ ∆. If 〈j(i)|i ∈ ∆〉 ⊂ H, it follows
dH(D, g) = 0. If V (C, h)0 6⊂ H, it follows that

V (C, h)0 ⊂ V (D, g)0 6⊂ H
and dH(D, g) = 0. Both statements are a contradiction to dH(D, g) > 0.

Assume now that dH(C, h) > 0 and #FH(C, h) > 2. Let (p,E) ∈ FH(C, h), i.e. v(p,E) /∈ H and
the direction vectors of all edges on the way from the loop to p lie in H. If π(E) is an edge of D,
then π(p) ∈ VH(D, g) because v ≤ p implies π(v) ≤D π(p) for all vertices v ∈ V(C) and because
v(p,E) = v(π(p), π(E)).

If π(E) is a vertex of D, then E is bounded and adjacent to an edge E′ with v(q, E′) /∈ H, due
to the balancing condition, where q ∈ E is the second vertex in E. Either π(E′) is a point or the
edge π(E′) is adjacent to the vertex π(p) of D. Since C is elliptic and since unbounded edges can
not be contracted in the specialization process, we arrive recursively at a flag (pD, ED) ∈ F(C)
such that

• the edge ED is not contracted by π, i.e. π(ED) ∈ E(D),
• π(pD) = π(p) and
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• v(C,h)(pD, ED) /∈ H.

As d(v) ≤ d(w) implies d(π(v)) ≤ d(π(w)) for all vertices v, w ∈ V(C), it follows π(pD) ∈
VH(D, g) and hence

(π(pD), π(ED)) ∈ FH(D, g).

Moreover, #FH(C, h) ≤ #FH(D, g): If there exists another flag (p,E) 6= (p,K) ∈ FH(C, h) closest
to the loop that runs out of H, it holds ED 6= KD because, in the construction of ED and KD, we
consider only edges outside the loop of C that lie behind the vertex p seen from the loop and the
paths from p to pD and pK , respectively, do not overlap. We conclude that

2 < #FH(C, h) ≤ #FH(D, g),

which is a contradiction. �

Proof of proposition 3.2.11. Let (Γ, v,≤) be a fine combinatorial type. Define α := (Γ, v).
For every [v] ∈ V(Γ), the concatenation of a polyhedral chart (jl,dα )−1 with the map

d[v] : P(α)→ R

given by (C, h) 7→ d(C,h)(v) that maps a vertex onto its distance to the loop is an affine linear
map (the coordinates on (C, h) ∈ P(α) are the edge lengths and the position of a root vertex in
Rm). The set of well-spaced curves of fine combinatorial type (Γ, v,≤) is cut out from P(Γ, v) by
equations of the type

(d[v1]−d[v2]) = 0 and (d[v1]−d[v2]) > 0,

where [v1], [v2] ∈ V(Γ). Hence, the set of well-spaced curves of fine combinatorial type (Γ, v,≤) is
a polyhedron in P(Γ, v).

The boundary of M1(Γ, v,≤) consists of curves where some of the inequalities (d[v1]−d[v2]) > 0
become equalities or where edges in the loop are contracted. This happens precisely when the total
preorder ≤ becomes coarser or the fine combinatorial type specializes, which may imply that edge
lengths become zero (i.e. also the combinatorial type specializes). Hence, M1(Γ, v,≤) is a closed

polyhedron in P(Γ, v). Due to the previous lemma it holds moreover that

M1(Γ, v,≤) ⊂M1,I(∆,Rm)

if (Γ, v,≤) is a fine combinatorial type of well-spaced curves. �

The following proposition is a first step on the way to describe the curves of maximal fine combi-
natorial type in M1,I(∆,Rm) combinatorially.

Proposition 3.2.13
Let (α,≤) be a maximal fine combinatorial type in M1,I(∆,Rm). Then (α,≤) is regular, i.e. α
does not contain vertices of genus greater than zero but an “honest” loop.

In order to prove this proposition, we will amongst others parametrize the combinatorial types
(Γ, v) that have Γ as underlying abstract combinatorial type. Moreover, we will describe regular
resolutions of a non-regular combinatorial type (Γ, v).

Definition 3.2.14 (Fp, v(p))
Let (C, h) ∈ M1,I(∆,Rm) and let p ∈ supp(C) be a point with d(p) ≥ 0. Then we define Fp(C)
as the set of flags segments of C that lie directly behind the point p seen from the loop, i.e.

Fp(C) := {(v,E) ∈ FSd(p)(C)|v = p}.

Moreover, we define v(C,h)(p) as the sum of the weighted direction vectors of the flags that lie
directly behind p, i.e.

v(C,h)(p) :=
∑

(p,E)∈Fp(C)

ω(E) · v(C,h)(p,E).

We define Fp(α) and vα([p]) analogously for a combinatorial type α. We just write Fp, v(p) and
v([p]) if no confusion can occur.
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The next lemma allows to parametrize the combinatorial types (Γ, v) if the abstract combinatorial
type Γ is given.

Lemma 3.2.15
Let C be a regular elliptic I∪̇∆-marked curve (i.e. C contains an “honest” loop) and let j : ∆→ Rm
be a degree. Moreover, let

((p1, E1), . . . , (pr, Er))

be a path that runs around the loop of C and let u ∈ Zm \ {0}. Then there exists a parametrized
curve (C, h) ∈ PI(∆,Rm) with ω(Er) · v(pr, Er) = u if and only if

u ∈ Conv

 i∑
j=1

v(pj)|i ∈ [r − 1]

◦ ,
where ◦ denotes the relative interior.

Moreover, there exist ai ∈ R, i = 1, . . . , r − 1 such that u =
∑r−1
i=1 ai · v(pi) and it holds 1 > a1 >

· · · > ar−1 > 0.

Proof. Note that r ≥ 2 because there exists a flag in the loop of C whose direction vector is
non-zero. v(pr, Er) determines the weighted direction vectors a flag (pi, Ei), i ∈ [r], in the loop of
C to be

ω(Ei) v(pi, Ei) = ω(Er) v(pr, Er)−
i∑

j=1

v(pj).

Note that it holds
∑
i∈[r] v(pj) = 0 due to the balancing condition. As the loop of h(C) is

“closed” and edge lengths are greater than zero, there exists a curve (C, h) ∈ PI(∆,Rm) with
ω(Er) · v(pr, Er) = u if and only if there exist 0 < λi ∈ R, i ∈ [r], which we scale such that∑r
i=1 λi = 1 (λi is the length of the edge Ei), such that

r∑
i=1

λi · ω(Ei) · v(pi, Ei) =

r∑
i=1

λi(u−
i∑

j=1

v(pj)) = 0

⇔ u−
r−1∑
i=1

λi(

i∑
j=1

v(pj)) = 0

⇔ u =

r−1∑
i=1

λi(

i∑
j=1

v(pj))

⇔ u =

r−1∑
i=1

(

r−1∑
j=i

λj) · v(pi)

The claim follows because
∑
i∈[r] λi = 1 and 1 > λi > 0 for all i ∈ [r]. �

We will introduce ordered partitions of a set in order to describe resolutions of vertices in the loop
of an elliptic curve.

Definition 3.2.16 (Sets of partitions O(O1, . . . , Os) and P(O1, . . . , Os))
Let (O1, . . . , Os) be an s-tuple of pairwise disjoint sets. Then we denote by O(O1, . . . , Os) the

set of ordered partitions (P1, . . . , Pr) of
⋃̇
i∈sOi that are finer than (O1, . . . , Os), i.e. there exist

i1, . . . , is = r ∈ [r] such that Oj =
⋃ij
i=ij−1+1 Pi for all j ∈ [s] (where i0 = 0). By P(O1, . . . , Os)

we denote the set of partitions {P1, . . . , Pr} of
⋃̇
i∈sOi that are finer than {O1, . . . , Os}.

Construction 3.2.17 (ΓO)
Let Γ be an abstract combinatorial type of elliptic curves and let (([v1], [E1]), . . . , ([vs], [Es])) be
a path around the loop of Γ, if Γ is regular. Otherwise, if Γ is non-regular, let [v1] be the unique
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vertex of Γ that has genus 1. (FS[v1], . . . ,FS[vs]) is an ordered partition of the flags FS0(Γ) at the
loop of Γ. An ordered partition

O = (O1, . . . , Or) ∈ O(FS[v1], . . . ,FS[vs])

that is finer than (FS[v1], . . . ,FS[vs]) defines a regular combinatorial type ΓO that is a resolution
of Γ and that fulfills that, when specializing from ΓO to Γ, only edges in the loop are contracted:

Assume that C ∈ Γ and remove CL from supp(C) such that supp(C) decomposes into #FS0(C)
connected components. Add r vertices v1, . . . , vr of genus zero such that precisely all E with
([p], [E]) ∈ Oi ⊂ FS0(Γ) are adjacent to vi, i ∈ [r]. Now we add edges between vi and vi+1 for
all i ∈ [r − 1] and between v1 and vr. We denote the combinatorial type of this curve by ΓO. See
figure 5 for an example in the case that Γ is non-regular, i.e. the loop of Γ consists only of one
vertex [v1].

Note that the path around the loop is not unique if there exists a flag in the the loop of Γ (the
path can start at different vertices in the loop and starting there can run in two direction around
the loop) and that hence different ordered partitions O1,O2 may induce the same combinatorial
type ΓO1

= ΓO2
. However, for all combinatorial types Γ ≤ Γ′ such that in the specialization

from Γ′ to Γ only edges in the loop are contracted there exists an ordered partition O that refines
(FS[v1], . . . ,FS[vs]) and that fulfills ΓO = Γ′.

x1

x2 x3

x4

x5

x6x7

genus 1

x1

x2

x3

x4

x5

x6

x7

Figure 5. On the left: A curve of combinatorial type Γ with one vertex of
genus one. On the right: A curve of combinatorial type ΓO where O =
({([p], [x1]), ([p], [x2])}, {([p], [x3])}, {([p], [x4]), ([p], [x5]), ([p], [x6])}, {([p], [x7])}) is
an ordered partition finer than (FS0(Γ)).

Proof of proposition 3.2.13. We will show that the fine combinatorial type of a non-
regular well-spaced curve (C, h) ∈ M1,I(∆,Rm) is not maximal in M1,I(∆,Rm). Denote the
unique vertex of C which has genus one by v ∈ V(C).

First case:

Assume that

dimV (C, h)0 < #FS0(C)− 1,

i.e. the flags that contain the unique vertex p ∈ V(C) of genus 1 fulfill at least one relation in
addition to balancing at p, and assume #FS0(C) ≥ 4.

If there exists a vertex of genus zero in C, i.e. {v ∈ V|d(v) > 0} 6= ∅, define

d :=
1

2
min{d(v)|v ∈ V(C),d(v) > 0},

i.e. d is half of the distance of the vertex closest to the loop. If C contains no vertex except the
vertex p of genus 1, i.e. {v ∈ V |d(v) > 0} = ∅}, set d =∞.

The direction vectors v(F ) of flags F ∈ FS0(C) at the loop of C fulfill a relation in addition to the
balancing condition at the vertex p ∈ V0(C). Hence, there exists a partition {F1,F2} ∈ P(FS0(C))
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x1

x2

x3

x4

x5

l3

l2

l3

l4

l5

p

genus 1

x1

x2

x3

x4

x5

l3

l2

l3

l′4

l′5

l

E

genus 1

v2v1

Figure 6. h(C) on the left and h′(C ′) on the right locally around the vertex h(p)
of genus one with edge lengths l = ε, l′4 = l4 − ε and l′5 = l5 − ε. The partition of
FS0(C, h) is {{(p, x1), (p, x2), (p, x3)}, {(p, x4), (p, x5)}} and x4, x5 ∈ 〈v(p, xi)|i ∈
[3]〉.

of the flags at the loop of C such that 〈v(F )|F ∈ F1〉 = V (C, h)0 and #F1,#F2 ≥ 2. (Here we
need #FS0(C) ≥ 4.)

The following construction is illustrated in figure 6. Since C is non-regular, we can add an edge
E to C at the vertex p of genus one such that the one vertex v1 ∈ E is contained in the flags
in F1 and such that the other vertex v2 ∈ E is contained in the flags in F2. Set the length of
the new edge to 0 < ε < d. Reduce the length of all edges E 6= E′ that are adjacent to v2 by ε,
which is possible due to the choice of d (as the distance to the loop of the vertex closest to the
loop). Assign genus one to v1 and genus zero to v2 and denote the arising curve by (C ′, h′) and
its combinatorial type by (Γ′, v′). Denote the total preorder on the vertices of Γ′ that comes from
d(C′,h′) by ≤′. (Γ, v,≤) is obviously a specialization of (Γ′, v′,≤′) and the two fine combinatorial
types are different.

Moreover, (C ′, h′) is well-spaced: Let H ⊂ Rm be a hyperplane with dH(C ′, h′) > 0. Since
V (C ′, h′)d′ = V (C ′, h′)0 for all 0 ≤ d′ < d, it follows dH(C ′, h′) > ε because we chose ε < d.
Moreover, the curve (C, h) looks as (C ′, h′) in the region where the distance to the loop is greater
than or equal to d. Therefore the well-spacedness of (C ′, h′) follows from the well-spacedness of
(C, h).

Second case:

We assume that dimV (Γ)0 = #FS0(Γ) − 1, i.e. the direction vectors of the flags containing the
unique vertex [p] ∈ V0(Γ) of genus one fulfill no relation in addition to balancing at [p]. Let
FS0(Γ) = {[F1], . . . , [Fr+1]} be the the set of flags that contain the vertex [p] of genus one. For
i ∈ [r + 1] set

ui := ω(Ei) · v([Fi]).

Due to the balancing conditions, it holds
∑r+1
i=1 ui = 0 and u1, . . . , ur are linearly independent

because of dimV (Γ)0 = #FS0(Γ)− 1. Set

FD(u1, . . . , ur+1) = {
r∑
i=1

λiui|0 ≤ λi < 1},

which is a fundamental domain of the lattice L(u1, . . . , ur) spanned by u1, . . . , ur. By defini-
tion of PI(∆,Rm), the multiplicity of C at p ∈ supp(C) is greater than one, which means that
ind(L(u1, . . . , ur)) > 1. This implies that #(Zm∩FD(u1, . . . , ur+1)) > 1 and there exists a non-zero
element

u ∈ Zm ∩ FD(u1, . . . , ur+1).
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We claim that there hence exists an ordered partition O = (O1, . . . , Os) ∈ O(FS0(Γ)) with s > 1
and [Fr+1] ∈ Os such that

u ∈ Conv

(
i∑

j=1

( ∑
k:[Fk]∈Oj

uk

)
|i = 1, . . . , s

)◦
:

Let (O1, . . . , Os) ∈ O(FS0(Γ)) be an ordered partition of the set of flags FS0(Γ) = {[Fi]|i ∈ [r+1]}
at the loop of Γ that fulfills [Fr+1] ∈ Os. Denote by λ(O1, . . . , Os) ⊂ FD(u1, . . . , ur+1) the subset
which consists of all

v =

r∑
i=1

λiui

that fulfill

• 0 ≤ λ1, . . . , λr < 1,
• λk = λl if there exists i ∈ [r] with [Fk], [Fl] ∈ Oi and
• λk > λl if there exist i, j ∈ [r] with i < j and [Fk] ∈ Oi, [Fl] ∈ Oj .

{λ(O1, . . . , Os)|(O1, . . . , Os) ∈ O({[F ]1, . . . , [Fr+1]}), [Fr+1] ∈ Os}
is by definition a partition of FD(u1, . . . , ur+1). It holds

Conv

 i∑
j=1

 ∑
k:[Fk]∈Oj

uk

 |i = 1, . . . , s

◦ = λ(O1, . . . , Os)

and therefore

FD(u1, . . . , ur+1) =
⋃̇

Conv

 i∑
j=1

 ∑
k:[Fk]∈Oj

uk

 |i = 1, . . . , s

◦ ,
where the disjoint union runs over all ordered partitions (O1, . . . , Os) ∈ O(FS0(Γ)) with FS0(Γ) =
{[F1], . . . , [Fr+1]} which fulfill [Fr+1] ∈ Os.
So let (O1, . . . , Os) be the ordered partition such that

u ∈ Conv

 i∑
j=1

 ∑
k:[Fk]∈Oj

uk

 |i = 1, . . . , s

◦ .
Since 0 6= u ∈ Zm, it holds s > 1. Due to lemma 3.2.15, there exists a regular curve (C ′, h′) ∈
PI(∆,Rm) which has combinatorial type (ΓO, vO) such that u ∈ Rm is the weighted direction
vector of a flag in the loop. Remember that (ΓO, vO) specializes to (Γ, v). Moreover, (Γ, v) and
(ΓO,≤O) are different because s > 1. We define ≤O on V(ΓO) via

[v] ≤O [w]⇔ π([v]) ≤ π([w])

where π : V(ΓO)→ V(Γ) is the projection map. Since in the specialization process only edges in
the loop are contracted and since (C, h) was chosen to be well-spaced, it follows that also a curve
(C ′, h′) of fine combinatorial type (ΓO, vO,≤O) is well-spaced. Hence, (Γ, v,≤) is not maximal in
M1,I(∆,Rm).

Third (and last) case:

Assume that dimV (C, h)0 < #FS0(C, h) − 1 and #FS0(C, h) = 3, hence dimV (C, h)0 = 1.
(#FS0(C, h) < 3 does not occur: That would imply dimV (C, h)0 ≤ 0. Hence, the multiplicity of
the vertex p ∈ V (C) of genus one would be one, which is not allowed.) Then, locally around the
vertex p ∈ supp(C) of genus one, the image of C under h looks as follows, where the li denote the
lengths of the edges:

weight ≥ 2

l1
p

l2

l3
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Since the weight of the edge on the left is greater than or equal to 2, we can resolve the vertex p
into a loop, see the figure below, and get a well-spaced curve that specializes to (C, h). Hence, the
fine combinatorial type of (C, h) is not maximal.

weight ≥ 2

l1 ε l2

l3

�

Here is a combinatorial description of the well-spaced elliptic curves contained in maximal polyhe-
dra of M1,I(∆,Rm).

Proposition 3.2.18
A curve (C, h) ∈M1,n(∆,Rm) has a maximal fine combinatorial type if and only if

a) C is regular,
b) dimV0/V<0 = #FS0 − #P0 (i.e. the direction vectors of the flags at the loop fulfill no

relation modulo V<0 in addition to balancing at the vertices in the loop) and
c) dim(Vd/V<d) = #FSd −#Pd − 1 for all d > 0 with Vd 6= ∅ (i.e. the direction vectors of

flag segments with distance d > 0 to the loop fulfill precisely one relation modulo V<d in
addition to balancing at the vertices with distance d to the loop - at least if there exists a
vertex which has distance d to the loop).

In the proof of this proposition we use an alternative description of well-spacedness that is based
on the relations that the direction vectors of flag segments with distance d to the loop fulfill in
Vd/V<d. This description allows to construct a well-spaced resolution if the conditions stated in
the proposition above are not fulfilled.

Definition 3.2.19 (d-well-spaced, V (A)<d)
Let (C, h) ∈ PI(∆,Rm) and 0 < d ∈ R. (C, h) is called d-well-spaced if

#FH > 2

for all hyperplanes H ⊂ Rm with distance dH = d to the loop.

For a set A ⊂ FSd(C, h) of flag segments with distance d to the loop define

V (A)<d := 〈V (C, h)<d ∪ {v(F )|F ∈ A}〉

as the linear space spanned by the direction vectors of flags that are closer to the loop than d and
by the direction vectors of the elements of A.

Remark 3.2.20
If there exists no vertex v ∈ V(C) with distance d(v) = d to the loop, there exists no hyperplane
H ⊂ Rm with distance dH = d to the loop and (C, h) is automatically d-well-spaced. A curve
(C, h) is therefore well-spaced if and only if it is d-well-spaced for all d > 0 with Vd 6= ∅.

Lemma 3.2.21
It holds

dimVd/V<d ≤ #FSd −#Pd − 1

for all curves (C, h) ∈M1,I(∆,Rm) and for all d > 0 with Vd 6= ∅. It is moreover true that

dimV0/V<0 ≤ #FS0 −#P0.

Proof. Let (C, h) ∈ M1,I(∆,Rm), d ≥ 0 and assume Vd 6= ∅, i.e. there exists a vertex with
distance d to the loop, which is always true for d = 0. Due to the balancing condition at all points
p ∈ Pd(C) with distance d to the loop, it holds dimVd/V<d ≤ #FSd −#Pd.

Assume that d > 0 and that dimVd/V<d = #FSd − #Pd, i.e. the direction vectors of the flags
with distance d to the loop fulfill no relation modulo V<d in addition to the balancing condition at
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the vertices v ∈ Vd. Let v ∈ Vd be a vertex with distance d to the loop and let F1, F2 ∈ Fv with
F1 6= F2 be flags that lie directly behind v seen from the loop. Then it holds

dimV (FSd \ {F1, F2})<d < dimVd,

and there exists a hyperplane H that contains V<d, all direction vectors v(F ) of flag segments
F ∈ FSd \ {F1, F2} with distance d to the loop but not v(F1) and v(F2). This implies that
#FH = 2 and (C, h) /∈M1,I(∆,Rm). �

Lemma 3.2.22
Let (C, h) ∈ PI(∆,Rm), d > 0 such that Vd 6= ∅. Then (C, h) is d-well-spaced if and only if there
exist pairwise different λF ∈ R, F ∈ FSd, that fulfill∑

F∈FSd

λF · vω(F ) ∈ V<d.

Proof. Assume that there exist pairwise different λF ∈ R, F ∈ FSd, such that∑
F∈FSd

λF · vω(F ) ∈ V<d.

Assume moreover that (C, h) is not d-well-spaced. Then there exists a hyperplane H ⊂ Rm, a
vertex v ∈ FSd with distance d to the loop and different flags F1, F2 ∈ FSv such that

V (FSd \ {F1, F2})<d ⊂ H

and vω(F1), vω(F2) /∈ H, i.e. the weighted direction vectors of all flag segments whose distance
to the loop is at most d are contained in H except the weighted direction vectors of F1 and F2.
In particular, it holds V<d ⊂ H. Due to the balancing condition at v ∈ Pd we can assume that
λF1
6= λF2

= 0. It follows

vω(F1)−
∑

F∈FSd\{F1,F2}

λF
λF1

vω(F ) ∈ V<d ⊂ H

and hence vω(F1) ∈ H. This is a contradiction.

Assume now that (C, h) is d-well-spaced. Assume moreover that there exist no pairwise different
λF ∈ R, F ∈ FSd, such that ∑

F∈FSd

λF · vω(F ) ∈ V<d.

Then there exists a vertex v ∈ Vd with distance d to the loop and flags F1, . . . , Fr ∈ FSv directly
behind v, with r ≥ 2, such that λFi = λFj for all such equations and all i, j ∈ [r]. (If there

exists an equation of this type with λ1
G1
6= λ1

G2
and an equation with λ2

G2
6= λ3

G3
, by scaling and

adding these two equations we see that there also exists an equation of this type where λG1 , λG2

and λG3
are pairwise different.) Let {F1, . . . , Fr} ⊂ FSd be the set containing all flags F ∈ Fv

that lie directly behind the vertex v ∈ Vd and that fulfill λF = λF1
for all equations of the type

from above. Then it holds that the vectors vω([F1]), . . . , vω([Fr]) fulfill only one relation modulo
V (FSd \ {F1, . . . Fr})<d, namely the one given by the balancing condition∑

i∈[r]

vω(Fi) ∈ V (FSd \ {F1, . . . Fr})<d,

in particular [vω(F1)], . . . , [vω(Fr−1)] are linearly independent in V (FSd \ {F1, . . . , Fr})<d. Hence,
there exists a hyperplane H ⊂ Rm that contains the linear space V (FSd \ {F1, . . . Fr})<d and the
vectors vω(F1), . . . , vω(Fr−2) but not vω(Fr−1) and vω(Fr). (Remember that r ≥ 2.) This is a
contradiction to the d-well-spacedness of (C, h).

�

The following constructions allow to find a well-spaced resolution of a well-spaced curve if condition
b) or c) is not fulfilled in the proposition above.
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Construction 3.2.23 (∆(F ), (αP ,≤P))
Let (C, h) ∈ PI(∆,Rm). Let (p,E) be a flag segment outside the loop that points away from the
loop, i.e. d(q) ≥ d(p) for all q ∈ E. Denote by ∆(F ) ⊂ ∆ ∪ I the set of labels i ∈ ∆ ∪ I such that
the leaf xi lies behind F seen from the loop, i.e. the path from p to the leaf xi labeled by i ∈ ∆(F )
contains F as first flag segment. If the flag segments F1, . . . , Fr ∈ Fp all lie behind the same point
p ∈ P(C), we define

∆(F1, . . . , Fr) =
⋃
i∈[r]

∆(Fi).

Given such a set ∆(F1, . . . , Fr), we can add an edge E({F1, . . . , Fr}) of length one to C such that
removing E({F1, . . . , Fr}) from C induces the partition {∆(F1, . . . , Fr),∆ \∆(F1, . . . , Fr)} of ∆.
We get a curve C({F1, . . . , Fr}). See the figure below for an example. (Remember that the length
of the edge E({(p,E2), (p,E3)}) was chosen to be one.)

x2 x3

p
E({(p, x2), (p, x3)})

x2 x3

Let now P = {P1, . . . , Pr} ∈ P({Fv}v∈Pd), i.e. P is a partition of the set of flag segments of C that
have distance d to the loop and P is finer than the partition given by the vertices with distance d
to the loop. Let (CP , hP) be a curve that arises from (C, h) by adding the edges E(Pi) of length
one to C for all i ∈ [r] and by choosing the position of the root vertex arbitrarily. See the figure
below for an example.

If the fine combinatorial type of (C, h) is (α,≤), we denote by (αP ,≤P) the fine combinatorial type
of (CP , hP) (which does not depend on the choice of the position of the root vertex of (CP , hP)).

l1 = 1

l2 = 1
E3, l3 = 1

E4 E5

E6, l6 = 2

E7

E8

E9, l9 = 2

E10, l10 = 1

p2

p3

h(C)

l1 = 1

l2 = 1

E3, l3 = 2 l = 1

E4 E5

E6, l6 = 3

E7

E8

E9, l9 = 2

E10, l10 = 2

p2

p3

hP(CP)

Figure 7. The fine combinatorial type of (CP , hP) on the right is constructed
from the fine combinatorial type of (C, h) on the left using the partition P =
{{(p1, E3)}, {(p1, E4), (p1, E5)}, {(p2, E7), (p2, E8)}, {(p3, E10)}} of FS2(C), the
flags with distance two to the loop, where p1 = E4 ∩ E5.

Remark 3.2.24
Let (C, h) ∈M1,I(∆,Rm) be of fine combinatorial type (α,≤) and let P = {Pi}i∈[r] be a partition
of FSd that refines the partition {Fp|p ∈ Pd} given by the points with distance d to the loop. In
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the case d > 0, (α,≤) = (αP ,≤P) if and only if #Pi = 1 for all i ∈ [r] (i.e. we enlarge the length of
all flag segments in FSd with distance d to the loop by one) or P = {Fp|p ∈ Pd} (i.e. we enlarge
the length of all edges which lie in front of p ∈ Pd by one). In the case d = 0, (α,≤) = (αP ,≤P)
if and only if #Pi = 1 for all i ∈ [r].

Remark 3.2.25
Assume that (C, h) ∈M1,I(∆,Rm) and P ∈ P({Fp}p∈Pd). Let d > 0. Since (C, h) is well-spaced,
a curve (CP , hP) (see previous construction) is well-spaced if and only if (CP , hP) is d-well-spaced.
If d = 0, a curve (CP , hP) is well-spaced if and only if it is 1-well-spaced.

Let (C, h) be of fine combinatorial type α. We will define a set Pard(C, h) ⊂ P({Fp(C, h)}p∈Pd(C,h))
of partitions of FSd which are finer than the partition given by the points with distance d to the
loop. Pard(C, h) is of interest because, in the case that d > 0, a resolution (αP ,≤P) of (α,≤),
where P ∈ P({Fp}p∈Pd), is well-spaced if and only if P ∈ Pard(C, h) (see the next corollary).

Construction 3.2.26 (Pard)
Let (C, h) ∈ M1,I(∆,Rm) and d > 0 such that there exists a vertex with distance d to the loop,
i.e. #Vd > 0. An equation ∑

F∈FSd

λF · vω(F ) ∈ V<d

defines a partition {F1, . . . ,Fr} of the flag segments with distance d to the loop that refines the
partition {Fp}p∈Pd , which is given by the vertices of distance d to the loop, in the following way:

Two flag segments F1, F2 which lie behind a point p ∈ Pd with distance d to the loop lie in the
same set Fi if and only if λF1

= λF2
, i.e. for p ∈ Pd and F1, F2 ∈ FSp, there exists i ∈ [r] with

F1, F2 ∈ Fi if and only if λF1
= λF2

.

Define Pard(C, h) ⊂ P({Fp(C, h)}p∈Pd(C,h)) (or just Pard) as the set of partitions of FSd that are
defined in this way by an equation as above and that are finer than the partition of FSd that is
given by the points with distance d to the loop. If d = 0, denote the combinatorial type of (C, h)
by α and define Par0(α) analogously.

Corollary 3.2.27
Let (C, h) ∈ M1,I(∆,Rm) be of fine combinatorial type (α,≤) and let d > 0 with #Vd > 0.
Assume that P ∈ P({Fp(C)}p∈Pd(C)) is a partition of the flags with distance d to the loop of C
that is finer than the one given by the vertices with the same distance to the loop.

Then the fine combinatorial type (αP ,≤P) is a fine combinatorial type of well-spaced curves if and
only if P ∈ Pard(C, h).

Proof. Let P ∈ Pard(C, h) and let (CP , hP) be a curve of combinatorial type (αP ,≤P) as in

construction 3.2.23. It holds
⋃̇
P∈PP = FSd(C), i.e. the union of the elements of P is the set of

flag segments with distance d to the loop of C. Since P ∈ Pard, there exist pairwise different λP ,
P ∈ P, such that ∑

P∈Pard

λP ·

(∑
F∈P

vω(F )

)
∈ V<d.

With lemma 3.2.22 and remark 3.2.25, it follows that (CP , hP), and hence (αP ,≤P), is well-
spaced. �

Lemma 3.2.28
Let (C, h) ∈M1,I(∆,Rm). If there exists d > 0 with Vd 6= ∅ such that

dimVd/V<d < #FSd −#Pd − 1

or if

dimV0/V<0 < #FS0 −#P0,

then the fine combinatorial type of (C, h) is not maximal.
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Proof. Denote the fine combinatorial type of (C, h) by (α,≤). Assume that there exists d > 0
with Vd 6= ∅ and

dim(Vd/V>d) < #FSd −#Pd − 1.

Then the weighted direction vectors of the flag segments with distance d to the loop fulfill at least
two independent relations in V<d of the type∑

F∈FSd

λF vω(F ) ∈ V<d

in addition to balancing at the vertices with distance d to the loop. Hence, the set of partitions
Pard of FSd from the construction above contains at least one element P ∈ Pard different from
{{F}|F ∈ FSd} and different from {FSp|p ∈ Pd} (the latter partition is induced by the equations
given by the balancing condition at the points p ∈ Pd with distance d to the loop). According to
the previous corollary and remark 3.2.24, it follows that (αP ,≤P) is a well-spaced resolution of
(α,≤) that is different from (α,≤).

Let us turn to the case where dimV0/V<0 < #FS0 −#P0: The weighted direction vectors vω(F )
of flag segments F ∈ FS0 at the loop fulfill at least one relation in addition to the balancing
condition at the vertices p ∈ FS0, i.e. we find coefficients 0 6= λF ∈ R, F ∈ FS0, such that there
exists v ∈ P0 and F1, F2 ∈ Fv with λF1

6= λF2
= 0 and such that∑

F∈FS0

λF · vω(F ) ∈ V<0.

Define a partition of the set of flag segments FS0 at the loop via

P = {{F}|F 6= F1, F2} ∪ {{F1, F2}},

and let (CP , hP) ∈ PI(∆,Rm) be a curve of fine combinatorial type (αP ,≤P) 6= (α,≤) as in
construction 3.2.23, see also remark 3.2.24.

(CP , hP) is d-well-spaced for all 1 6= d > 0 because (C, h) is well-spaced. It is also 1-well-spaced:
It holds λ1 6= 0 and

vω(F1) =
∑

F∈FS0\{F1,F2}

λF
λF1

· vω(F ) ∈ V (CP , hP)0.

Due to the balancing condition, it follows vω(F2) ∈ V (CP , hP)0 and hence

V (CP , hP)1/V (CP , hP)<1 = V (CP , hP)0/V (CP , hP)0 = {0}.

It follows that there do not exist hyperplanes H ⊂ Rm that fulfill dH = 1. Hence, (CP , hP) is
well-spaced and the combinatorial type of (C, h) is not maximal in M1,I(∆,Rm). �

Proof of proposition 3.2.18. Let (C, h) ∈MI,1(∆,Rm) be regular,

(∀ d > 0 : Vd 6= ∅ ⇒ dimVd/V<d = #FSd −#Pd − 1) and (dimV0/V<0 = #FS0 −#P0) .

Assume that the fine combinatorial type of (C, h) is not maximal. Then there exists (C, h) ≤
(D, g) ∈ M1,I(∆,Rm) such that the fine combinatorial types of the two curves are different.
Denote by π : supp(D) → supp(C) the projection map. Due to the assumptions, there exists an
edge E ∈ E(D) and a vertex p ∈ V(C) such that π(E) = p, i.e. E ⊂ supp(D) is contracted to the
point v ∈ supp(C). E is bounded and we denote the two vertices contained in E by p1, p2 ∈ V(D).

If E ⊂ DL is contained in the loop of D, denote the vertices in the loop of D by p1, . . . , pr ∈ DL

with p1, p2 ∈ E in a way that ((p1, E), (p2, E2), . . . , (pr, Er)) is a path around the loop of D. Set
E1 := E. By lemma 3.2.15, there exist λi ∈ R>0 - with λi < λj if i > j - such that∑

i∈[r−1]

λi · vω(D,g)(pi) = vω(D,g)(pr, Er) ∈ V<0(D, g) ⊂ V<0(C, h)
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Hence, the weighted direction vectors vω(F ) of the flags F ∈ FS0(C) at the loop of C fulfill a
relation modulo V (C, h)<0 in addition to the balancing condition at the vertices v ∈ V0(C). This
is a contradiction to

dimV (C, h)0/V<0(C, h) = #FS0(C, h)−#P0(C, h).

Assume now that E 6⊂ DL, denote the two boundary points by p1, p2 ∈ E and assume without
loss of generality that d(p1) < d(p2). It follows from lemma 3.2.21 that there exist a1, a2 ∈ N with
a2 ≥ 1 and a1 ≥ 0 (a1 can be zero if p1 is contained in the loop) such that

dimV (D, g)d(p1)/V (D, g)<d(p1) = #FSd(p1)(D, g)−#Pd(p1)(D, g)− a1

and

dimV (D, g)d(p2)/V (D, g)<d(p2) = #FSd(p2)(D, g)−#Pd(p2)(D, g)− a2.

Since π : supp(D)→ supp(C) fulfills π(E) = π{p1} = π{p2} = p, it follows that

dimV (C, h)d(p)/V (C, h)<d(p) ≤ #FSd(p)(C, h)−#Pd(p)(C, h)− (a1 + a2).

If d(p1) > 0, it holds a1 ≥ 1 and a1 + a2 ≥ 2. If d(p1) = 0, it holds a1 ≥ 0 and a1 + a2 ≥ 1.
Both statements contradict the prerequisites stated at the beginning of the proof. Thus, the fine
combinatorial type of (C, h) is maximal in M1,I(∆,Rm).

It follows from lemma 3.2.13 and lemma 3.2.28 that curves in M1,I(∆,Rm) of maximal fine com-
binatorial type fulfill the properties stated in the proposition. �

Proof of theorem 3.2.10. Using proposition 3.2.11, it remains to show thatM1,I(∆,Rm)
is pure-dimensional of dimension ∆ + #I − dim〈j(∆)〉. Let (C, h) ∈ M1,I(∆,Rm) be of maximal
fine combinatorial type (Γ, v,≤). Denote the set of bounded edges of C by Eb. From construction
3.1.9 and proposition 3.2.18 it follows that

dim M1(Γ, v,≤) = #Eb +m− dimV<0 −
∑

d>0,#Vd>0

(#Vd − 1).

The terms (#Vd − 1) stand for the condition that all v ∈ Vd have the same distance to the
loop, m stands for the position of the root vertex and dimV<0 for the condition that the loop is
closed. Since (C, h) is regular (i.e. C contains only vertices of genus zero and an “honest” loop),
the number of bounded edges is given by

Eb = #∆ + #I −
∑
v∈V

(val(v)− 3).

From lemma 3.2.18, it follows
∑
v∈P0

(val(v) − 3) = dimV0/V<0 (the direction vectors of flags at
the loop fulfill no relation modulo V<0 in addition to balancing and there are two edges in the loop
adjacent to each vertex v ∈ V0 in the loop) and for all d > 0 with #Vd > 0∑

v∈Pd

(val(v)− 3) + #Pd − 1 =
∑
v∈Pd

(val(v)− 2)− 1 = dimVd/V<d,

i.e. the direction vectors of flags with distance d to the loop fulfill precisely one relation modulo
V<d in addition to balancing at each point p ∈ Pd and, for each p ∈ Pd, there exists one flag
segment (p,E) ∈ FS that points towards the loop.
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We conclude

dim M1(Γ, v,≤)

= #∆ + #I −
∑
v∈V

(val(v)− 3) +m− dimV<0 −
∑

d>0,Vd 6=∅

(#Vd − 1)

= #∆ + #I −

dimV0/V<0 +
∑

d>0,Vd 6=∅

(dimVd/V<d − (#Vd − 1))


+m− dimV<0 −

∑
d>0,Vd 6=∅

(#Vd − 1)

= #∆ + #I +m− dim〈j(∆)〉.

�

Definition 3.2.29
Let (C, h) ∈M1,I(∆,Rm) be of fine combinatorial type (Γ, v,≤). We define the (co-)dimension of
(Γ, v,≤) as the (co-)dimension of the polyhedron M1(∆, v,≤) in M1,I(∆,Rm). Its dimension is
equal to

#∆ + #I −
∑
v∈V

(val(v)− 3) +m− dimV<0 −
∑

d>0,Vd 6=∅

(#Vd − 1),

where #∆+#I−
∑
v∈V(val(v)−3) is the number of bounded edges of Γ, m stands for the position

of a root vertex, (−dimV<0) appears because the loop is closed and (−
∑
d>0,Vd 6=∅(#Vd − 1)) is

the number of conditions on the edge lengths outside the loop imposed by the total preorder ≤ on
the set of vertices outside the loop of Γ.

The (co-)dimension of (C, h) is defined as the (co-)dimension of (Γ, v,≤)



68 3. ENUMERATIVE GEOMETRY OF ELLIPTIC TROPICAL CURVES IN RM

3.3. A tropical structure on M1,I(∆,Rm)reg

We equip the facets ofM1,I(∆,Rm) with integer weights and construct a tropical atlas on a dense
open subset M1,I(∆,Rm)reg of M1,I(∆,Rm) containing only regular elliptic curves, which have
an “honest” loop.

Weights on M1,I(∆,Rm).

Definition 3.3.1 (ind(α), n(P ), # Aut(α))
Let (C, h) ∈M1,I(∆,Rm) be of combinatorial type α. For shortening notation, we define

ind(α) := ind(L(α)0)) = [sat(L(α)0) : L(α)0],

i.e. ind(α) is the index of the lattice spanned by the weighted direction vectors in and at the loop
of α. For a finite set P 6= ∅, we define

n(P ) := (−1)#P−1(#P − 1)!.

Moreover, define # Aut(α) as the order of the automorphism group of a curve (C, h) of combina-
torial type α. # Aut(α) is one, except if α has only one edge that is contained in the loop - in this
case all curves of combinatorial type α have two automorphisms and # Aut(α) is two, see corollary
1.3.13.

Definition 3.3.2 (The weighted abstract polyhedral complex M1,I(∆,Rm), P0(α))

If (α,≤) is a maximal combinatorial type inM1,I(∆,Rm), we equip the facet M1(α,≤) containing
all curves whose fine combinatorial type is a specialization of (α,≤) with weight

ω(M1(α,≤)) := ω(α) :=
1

# Aut(α)
·

∑
P∈P({Fv(α)}v∈V0(α))

[∏
P∈P

n(P )

]
· ind(αP),

i.e. the sum runs over all partitions P ∈ P(FS0(α)) of the flags at the loop of α that are finer
than the partition {Fv(α)}v∈V0(α) given by the vertices in the loop of α. The combinatorial types
αP , P ∈ {Fv}v∈V0

, are constructed from α in 3.2.23.

For shortening notation, we set P0(α) := P({Fv(α)}v∈V0(α)).

Example 3.3.3
Figure 8 illustrates a combinatorial type α and also the combinatorial types which are of the form
αP , P ∈ P0(α). Assume that the fine combinatorial type (α,≤) is maximal and let us calculate

the weight ω(α) of the facet M1(α,≤):

ω(α) =
∑

P∈P0(α)

[∏
P∈P

(−1)#P−1(#P − 1)!

]
· ind(αP)

= ind(α)

+ (−1) ·
4∑
i=1

ind(βi)

+ (−1)2 ·

(
2! · ind(γ1) +

4∑
i=2

ind(γi)

)
+ (−1)3 · 2! · ind(δ)

= ind(α)−
4∑
i=1

ind(βi) + 2 · ind(γ1) +

4∑
i=2

ind(γi)− 2 · ind(δ)
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x1 x2 x3

x4

x5x6

α

{{1}, {2}, {3}, {4}, {5}, {6}}

x1 x2 x3

x4

x5x6

β1

{{1}, {2}, {3}, {4, 5}, {6}}

x1 x2 x3

x4

x5x6

β2

{{1}, {2, 3}, {4}, {5}, {6}}

x2 x1 x3

x4

x5x6

β3

{{1, 3}, {2}, {4}, {5}, {6}}

x3 x1 x2

x4

x5x6

β4

{{1, 2}, {3}, {4}, {5}, {6}}

x1 x2 x3

x4

x5x6

γ1

{{1, 2, 3}, {4}, {5}, {6}}

x1 x2 x3

x4

x5x6

γ2

{{1}, {2, 3}, {4, 5}, {6}}

x2 x1 x3

x4

x5x6

γ3

{{1, 3}, {2}, {4, 5}, {6}}

x3 x1 x2

x4

x5x6

γ4

{{1, 2}, {3}, {4, 5}, {6}}

x1 x2 x3

x4

x5x6

δ

{{1, 2, 3}, {4, 5}, {6}}

Figure 8. A list of the combinatorial types which are of the form αP , P ∈ P0(α).
The corresponding partition of the set of flags at the loop of α is given below each
curve, where we refer to a flag by i ∈ [6] if it contains the leaf xi.

Tropical atlas on M1,I(∆,Rm)reg. We will construct a tropical atlas on the open and dense
subvarietyM1,I(∆,Rm)reg ofM1,I(∆,Rm), which turnsM1,I(∆,Rm)reg into an abstract tropical
variety. The target of the fan charts will be suitable moduli spaces of rational curves. In order
to define the charts, we use the following construction that a assigns a rational curve (CF , hF ) to
a regular elliptic curve (C, h) ∈ PI(∆,Rm) and to a flag F ∈ F(C) in the loop of C that fulfills
vω(F ) 6= 0.

The idea is the same as for example in [KM09] and [Her09].

Construction 3.3.4 (Rational curve (CF , hF ) ∈M0,I′(∆[F ],Rm), (α[F ],≤[F ]))
Let (C, h) ∈ PI(∆,Rm) be regular. Hence, there exists a flag F = (p,E) ∈ F(C) that is part of
the loop and that fulfills vω(F ) 6= 0. Denote the vertex contained in E which is not p by q ∈ E.
Set z := ω(E) v(p,E) to be the weighted direction vector of F . Define

∆[F ] := ∆ ∪ {z,−z} and I ′ := I∪̇{A,B}.

We

• cut the loop of C in the middle of the edge E,
• add a vertex q′ at the new end that is adjacent to the vertex q and add two leaves at q′,

which we label by −z and A,
• add a vertex p′ at the new end that is adjacent to the vertex p and add two leaves at p′,

which we label by z and B.
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See figure 9 for an example of the described construction. We denote the arising rational curve
by CF and define hF : CF → Rm as the map which is induced by h : C → Rm, fulfills that
the weighted direction vectors of the new unbounded flags (p′, xz) and (q′, x−z) are z and −z,
respectively, and fulfills that the leaves xA and xB are contracted to a point. The curve (CF , hF )
is an element of M0,I′(∆[F ],Rm).

Let P be the unique path from p′ to q′ in CF . Then we call the union of the edges that appear in
this path together with the leaves xA, xB , xz and x−z the loop (CF )L of CF , i.e.

(CF )L := xA ∪ xB ∪ xz ∪ x−z ∪
(⋃

E
)

where the union runs over all flags (p,E) that appear in the path P from p′ to q′. With this notation,
all definitions and notations around the loop of (C, h) can be used analogously for (CF , hF ), e.g.
V (CF , hF )0, L(α[F ])0 and FH(CF , hF ) for a hyperplane H ⊂ Rm, and also the question if (CF , hF )
is well-spaced makes sense.

In particular, (CF , hF ) has a fine combinatorial type, and (C, h) is well-spaced if and only if
(CF , hF ) is well-spaced. If the fine combinatorial type of (C, h) is (α,≤), we denote the fine
combinatorial type of (CF , hF ) by (α[F ],≤[F ]).

E

h

p

q

C

p′

q′

A

−z

z

B

CF

hF

h(p)

h(q)

h(C)

h(xz)

h(x−z)

h(xA) h(xB)

h(CF )

Figure 9. Example of construction 3.3.4. The first row shows the abstract curves
C and CF , the second row shows their images under h and hF .

Definition 3.3.5 (U(α[F ],≤[F ]) ⊂M0,I′(∆[F ],Rm))
Let (α,≤) be a regular combinatorial type in M1,I(∆,Rm) and let [F ] be a flag in the loop of α
that fulfills vω([F ]) 6= 0. Then we denote by U(α[F ],≤[F ]) ⊂M0,I′(∆[F ],Rm) the subset of curves
whose fine combinatorial type specializes to (α[F ],≤[F ]) and which correspond to an elliptic curve
in M1,I(∆,Rm), i.e. a curve (C, h) ∈ U(α[F ],≤[F ]) that fulfills h(xA) = h(xB), that the edges
between the vertices p and p′ and between the vertices q and q′ have the same length (where we
use the notation from the construction above) and that it is well-spaced.

Since the coordinates both on M1,I(∆,Rm) and M0,I′(∆[F ],Rm) are given by the edge lengths
and the position of a root vertex, it follows from theorem 3.2.10 that U(α[F ],≤[F ]) is a pure-
dimensional open subcomplex of M0,I′(∆,Rm). We equip a facet of U(α[F ],≤[F ]) containing
curves of combinatorial type β[F ] with the weight

# Aut(β) · ω(β),

where β is the fine combinatorial type of curves corresponding to β[F ], i.e. the facet in U(α[F ],≤[F ])

has # Aut(β)-times the weight of the corresponding facet in M1,I(∆,Rm) and the factor 1
# Aut(β)

appearing in ω(β) cancels out. Remember that Aut(β) is one if β has at least two edges in the loop.
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By abuse of notation, we denote the arising weighted abstract polyhedral complex by U(α[F ],≤[F ]),
too.

Construction 3.3.6 (M1,I(∆,Rm)reg, fan charts ψ
[F ]
α,≤)

Let (β,≤β) be fine combinatorial types of regular elliptic curves that specializes to (α,≤). Let
U(α,≤) be the polyhedral neighborhood of M1(α,≤) which contains all curves that have a fine
combinatorial type that specializes to (α,≤), where M1(α,≤) is the set of curves that have fine
combinatorial type (α,≤). In particular, it holds M1(β,≤β) ⊂ U(α,≤).

Define

M1,I(∆,Rm)reg =
⋃
U(α,≤),

where the sum runs over all fine combinatorial types (α,≤) which have at least codimension one
in M1,I(∆,Rm) and at least two edges in the loop and over all maximal fine combinatorial types
in M1,I(∆,Rm) which have at least one edge in the loop. Note that M1,I(∆,Rm)reg contains
only regular curves and note that a fine combinatorial type (α,≤) in M1,I(∆,Rm)reg has at
least two edges in the loop, if the codimension of (α,≤) is at least one. We equip the facets of
M1,I(∆,Rm)reg with the weight of the corresponding facet inM1,I(∆,Rm), and denote the arising
weighted abstract polyhedral complex by M1,I(∆,Rm)reg, too.

Choose a flag [F ] ∈ F(α) in the loop of α that fulfills vω([F ]) 6= 0. If a curve (C, h) of combinatorial
type α has no non-trivial automorphisms, there exists precisely one flag in the loop of β which
is mapped to [F ] in the specialization process, see lemma 3.1.7. In particular, it has the same
weighted direction vector as [F ]. We denote this flag of β by [F ], too. If α is maximal and has
only one edge in the loop, let (C, h) be of combinatorial type α. There exist two different flags
F1 = (p,E2), F2 = (p,E2) in the loop of C that fulfill [F ] = [F1] = [F2]. Since v(F1) = v(F2) and
ω(E1) = ω(E2) and since there are only two edges in the loop of C, it holds (CF1 , hF1) = (CF2 , hF2).

Thus, the following map is well-defined if (α,≤) is a fine combinatorial type in M1,I(∆,Rm):

ψ
[F ]
α,≤ : U(α,≤) → U(α[F ]) ⊂M0,I′(∆[F ],Rm)

(C, h) 7→ (CF , hF ),

where U(α[F ]) is the polyhedral neighborhood of M0(α[F ]) that contains all curves whose combi-
natorial type specializes to α[F ]. The image consists precisely of the curves (D, g) ∈ U(α[F ]) that
satisfy

• g(A) = g(B),
• that the lengths of the edges between the vertices p and p′ and between the vertices q and
q′ coincide (in the notation of construction 3.3.4) and

• that are well-spaced.

Hence, it holds im
(
ψ

[F ]
α,≤

)
= U(α[F ],≤[F ]).

Since the coordinates in the domain and the target space are the edge lengths and the position of

a root vertex, ψ
[F ]
α,≤ is injective and integer affine linear invertible on each polyhedron M1(β,≤β)

in U(α,≤). (There is only one coordinate in the target space for the lengths of the two cut edges
because their length is equal. It is given by the sum of edge lengths of the cut edges.)

Let U(α,≤) ∩ U(β,≤β) 6= ∅ and let [G] be a flag in the loop of β. Then the concatenation

ψ
[F ]
α,≤ ◦ (ψ

[G]
β,≤′)

−1 is, where defined, the restriction of an integer affine linear invertible map because

both on M1,I(∆,Rm), M0,I′(∆[F ],Rm) and M0,I′(∆[G],Rm) the coordinates are given by the
edge lengths and the position of a root vertex.

Remark 3.3.7
With the described construction, we can define fan charts ψ

[F ]
α,≤ only on subvarieties ofM1,I(∆,Rm)

which contain only regular curves. Non-regular fine combinatorial types (α,≤) do not have any flags
in the loop and the direction vectors of flags in the loop of their regular resolutions differ in general.
Hence, in the case that α is non-regular it is not possible to identify a polyhedral neighborhood of
a polyhedron M1(α,≤) with a open subvariety of a unique moduli space of rational curves.
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Moreover, if there is only one edge in the loop of α and if α ≤ β has more than one edge in the
loop, there exist two edges in the loop of β that correspond to the unique edge in the loop of α, see

the figure below. Hence, the fan chart ψ
[F ]
α,≤ in the previous construction would not be well-defined.

It follows that M1,I(∆,Rm)reg is the maximal subset of M1,I(∆,Rm) on which we can define fan
charts with the previous construction.

[E]

[E1]

[E2]

Figure 10. Assume ω([E1]) = ω([E2]). The combinatorial type β in R2 on the
right specializes to the combinatorial type α on the left, whose only edge in the
loop is [E]. Both edges [E1] and [E2] go to [E] in the specialization process. If we
cut the edges [E1] and [E2] in the middle, two different combinatorial types arise.

The aim of this section is to prove the following theorem.

Theorem 3.3.8

M1,I(∆,Rm)reg together with the weights defined in 3.3.2 and together with the atlas
{
ψ

[F ]
α,≤

}
(α,≤)

,

where the fine combinatorial type (α,≤) has at least codimension one, is an abstract tropical
variety.

Remark 3.3.9
Note that the weights on U(α[F ],≤[F ]), the image of ψ

[F ]
α,≤ coincide with the corresponding weights

in M1,I(∆,Rm)reg (although their definitions differs by a factor # Aut(α)) because # Aut(α) = 1
for all fine combinatorial types of codimension at least one in M1,I(∆,Rm)reg.

In order to prove this theorem, we will show that U(α[F ],≤[F ]) is a tropical fan if (α,≤) is a regular
fine combinatorial type of codimension one in M1,I(∆,Rm), where “regular” means that α has
only vertices of genus zero and an “honest” loop. This is sufficient to prove the theorem above
because it holds

im
(
ψ

[F ]
α,≤

)
= U(α[F ],≤[F ])

if (α,≤) is a fine combinatorial type inM1,I(∆,Rm)reg, i.e. if α has at least two edges in the loop.
(In this case # Aut(α) is one.)

The following lemma describes the regular fine combinatorial types in M1,I(∆,Rm) which have
codimension one.

Lemma 3.3.10
Let (α,≤) be a regular fine combinatorial type in M1,I(∆,Rm) and let (C, h) be of fine combina-
torial type (α,≤). Then (C, h) has codimension one if and only if it fulfills one of the following
properties:

a) (C, h) is regular and there exists d > 0 with #Vd > 0 such that
(a) dimVd/V<d = #FSd −#Pd − 2,
(b) dimV0/V<0 = #FS0 −#P0,
(c) dimVd′/V<d′ = #FSd′ −#Pd′ − 1 for all d 6= d′ > 0 with #Vd′ 6= ∅.

In this case, in the specialization process from a curve of maximal combinatorial type to
(C, h) an edge which does not intersect the loop is contracted.

b) (C, h) is regular and fulfills
(a) dimV0/V<0 = #FS0 −#P0 − 1 and
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(b) dimVd/V<d = #FSd −#Pd − 1 for all d > 0 with #Vd 6= ∅.
In this case, in the specialization process from a curve of maximal combinatorial type to
(C, h) an edge in or at the loop is contracted.

Proof. The local coordinates on M1,I(∆,Rm) are given by the edge lengths and the coordi-
nates for the position of a root vertex in Rm. A curve (C, h) ∈M1,I(∆,Rm) has codimension one
if and only if it is a specialization of a curve (D, g) ∈M1,I(∆,Rm) of maximal combinatorial type
such that in the specialization only one coordinate, an edge length, has become zero. It follows
from proposition 3.2.18 that, if the edge whose edge length is set to zero does not intersect the
loop of D a curve with the properties from a) arises. Using the same proposition we see that, if
the contracted edge intersects the loop, (C, h) is of type b). �

We first deal with case a) of the lemma above. First, we show balancing of U(α[F ],≤[F ]) in example

cases in R3.

Example 3.3.11
A curve (CF , hF ) of combinatorial type (α[F ],≤[F ]) in R3 is shown in figure 11. (In order to have
clearer pictures, we do not illustrate the cut flag [F ].) We assume dimV (CF , hF )0 = 2, that the
distance of the unique vertex outside the loop to the loop is one and that V (CF , hF )1 = R3. We
denote the flag segments in FS1(C, h) by Fi, i ∈ [6].

edge length is one

F5 F6

F1 F2 F4F3

Figure 11.

• Assume that none of the direction vectors of the flags Fi, i ∈ [4], lie in V (α[F ])0, i.e.

〈V (α[F ])0 ∪ {v(Fi)}〉 = R3 for all i ∈ [4]. Then the well-spaced resolutions are given, in
figure 12, by the combinatorial types on the left for any i1, i2 ∈ [4] with i1 6= i2. The
sum over the representatives of respective normal vectors is given by the curve on the
right (see lemma 1.3.16), which is an element of the vector space spanned by curves of
fine combinatorial type (α,≤) in which the loop is closed. We do not have to consider the
weights of the facets in this calculation because they are all equal (since the weight of a
facet only depends on the combinatorics in and at the loop of the corresponding curves).

Fi1Fi2

F1 F2 F4F3

edge length is one

F5 F6

Figure 12.

• Assume that v(F4) ∈ V (α[F ])0, v(Fi) /∈ V (α[F ])0 for i ∈ [3] and v(F4) ∈ V (α[F ])0. The
well-spaced resolutions are shown below, where i ∈ [3]. The sum over the representatives
of the normal vectors is the same as in the previous case, see again lemma 1.3.16. Again,
the weights of the facets corresponding to the resolutions are all equal.
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Fi F4

F4

F1 F2 F3

• Finally assume that v(F3), v(F4) ∈ V (α[F ])0 and v(F1), v(F2) /∈ V (α[F ])0. In this case,
(α[F ],≤[F ]) is not well-spaced: Let the hyperplane H ⊂ Rm be given by H = V (α[F ])<0.
Then it holds FH = {F1, F2}, #FH = 2 and (α,≤) is not well-spaced. Hence, we do not
deal with this case.

Proposition 3.3.12
Let (α,≤) be a regular fine combinatorial type of codimension one inM1,I(∆,Rm) (i.e. α has only
vertices of genus zero) and let (C, h) be of fine combinatorial type (α,≤). Assume that there exists
d > 0 with #Vd > 0 and dimVd/V<d = #FSd −#Pd − 2. Then, for all flags [F ] in the loop of α
that fulfill v([F ]) 6= 0, the weighted subcomplex U(α[F ],≤[F ]) of M0,I′(∆[F ],Rm), whose support
contains all curves whose fine combinatorial type specializes to (α[F ],≤[F ]), is a tropical fan.

Proof. Since (C, h) is regular, there exists a flag F in the loop of (C, h) whose direction vector
v(F ) is non-zero. It follows from proposition 3.2.18 and lemma 3.2.27 that for all fine combinatorial
types (α[F ],≤[F ]) ≤ (β,≤β) in M0,I′(∆[F ],Rm) there exists P ∈ Pard(CF , hF ) such that

(β,≤β) = ((α[F ])P , (≤[F ])P).

Since all ((α[F ])P , (≤[F ])P), P ∈ Pard, have the same combinatorics in and at the loop as the fine
combinatorial type (α[F ],≤[F ]), all facets of U(α[F ],≤[F ]) have the same weight

Aut(α) · ω(α).

We claim that, for all pairs of flag segments F1, F2 ∈ FSd(C, h) of distance d to the loop which both
lie behind the same vertex v ∈ Pd, there exists precisely one partition P ∈ Pard(C, h) that fulfills
that F1 and F2 belong to the same set, i.e. that fulfills that there exists P ∈ P with F1, F2 ∈ P :

Remember that all partitions P ∈ Pard are strictly finer than the partition {Fv}v∈Pd given by the
points with distance d to the loop. Assume that there are two different partitions P1,P2 ∈ Pard
that are strictly finer than the partition {Fv}v∈Pd given by the points with distance d to the loop
such that F1 and F2 lie in the same set in both partitions, i.e. there exist sets P1 ∈ P1 and P2 ∈ P2

such that F1, F2 ∈ P1 and F1, F2 ∈ P2. Then, in addition to the balancing condition at points
p ∈ Pd there exist two equations∑

F∈FSd

λ1
F · vω(F ) ∈ V<d and

∑
F∈FSd

λ2
F · vω(F ) ∈ V<d

that induce different partitions P1,P2 such that vω(F1) and vω(F2) have the same coefficients
in both equations, i.e. λiF1

= λiF2
for i ∈ {1, 2} (see 3.2.26 for the construction of the partitions

P1,P2). In particular, the two equations are independent. Due to dimVd/V<d = #FSd−#Pd− 2
the weighted direction vectors vω(F ) of flags F ∈ FSd with distance d to the loop fulfill altogether
only two independent relations modulo V<d in addition to balancing. It follows that all such
equations

∑
F∈FSd

λF · vω(F ) ∈ V<d fulfill λF1
= λF2

. Using lemma 3.2.22, this is a contradiction

to the d-well-spacedness of (CF , hF ).

Next, we show that for two flag segments F1, F2 ∈ FSd that lie behind one point p ∈ Pd there
exists a partition P ∈ Pard which is strictly finer than the partition {Fv}v∈Pd given by the points
with distance d to the loop and which fulfills that there exists P ∈ P with F1, F2 ∈ P . Since

dimVd/V<d = #FSd −#Pd − 2
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there exist two independent relations∑
F∈FSd

λ1
F · vω(F ) ∈ V<d and

∑
F∈FSd

λ2
F · vω(F ) ∈ V<d

in addition to balancing at points with distance d to the loop. (Balancing implies that, for all
points p ∈ Pd with distance d to the loop, the sum over the weighted direction vectors of flags
that lie directly behind p seen from the loop lies in V<d, i.e.

∑
F∈Fp vω(F ) ∈ V<d.) If λ1

F1
= λ1

F2

or λ2
F1

= λ2
F2

, we define P as the partition corresponding to this equation, see construction 3.2.26.

Otherwise, it holds λ1
F1
6= λ1

F2
and λ2

F1
6= λ2

F2
. Due to balancing at the points p ∈ Pd, we can

assume without loss of generality that

λ1
F1

= λ2
F2

= 1 and λ1
F2

= λ2
F1

= 0.

Hence, the coefficient both of vω(F1) and vω(F2) is one in∑
F∈FSd

(λ1
F + λ2

F ) · vω(F ) ∈ V<d.

Assume that the partition defined by this equation is {Fv}v∈Pd , see again construction 3.2.26.
Then it holds λ1

G1
+ λ2

G1
= λ1

G2
+ λ2

G2
for all pairs of flag segments G1, G2 ∈ FSd with distance d

to the loop that lie behind one vertex v ∈ Pd, i.e. there exists v ∈ Pd such that G1, G2 ∈ Fv. It
follows that for all p ∈ Pd there exist rp ∈ R such that λ2

F = rp − λ1
F for all F ∈ Fp. This is a

contradiction to the prerequisite that∑
F∈FSd

λ1
F · vω(F ) ∈ V<d and

∑
F∈FSd

λ2
F · vω(F ) ∈ V<d

are two independent relations in addition to the balancing condition (
∑
F∈Fp vω(F ) ∈ V<d) at the

points with distance d to the loop (which is
∑
F∈Fp vω(F ) ∈ V<d).

Let P ∈ Pard. A representative vP of the normal vector u((α[F ])P ,(≤[F ])P)/(α[F ],≤[F ]) is given by

vP :=
∑
P∈P

v∆(P )

where ∆(P ) ⊂ ∆[F ] ∪ (I ∪ {A,B}) is defined in construction 3.2.23 and where vJ is defined in
1.3.15 and 1.3.25 for a subset J ⊂ ∆[F ] ∪ (I ∪ {A,B}). It follows from lemma 1.3.16 that

v∆(P ) =
∑

j1,j2∈∆(P )

v{j1,j2}

=
∑

F1,F2∈P,
F1 6=F2

∑
j1∈∆(F1),

j2∈∆(F2)

v{j1,j2} +
∑
F∈P

∑
j1,j2∈∆(F )

v{j1,j2}

=
∑

F1,F2∈P

(
v∆(F1)∪∆(F2) − v∆(F1) − v∆(F2)

)
+
∑
F∈P

v∆(F )

and hence

vP =

∑
P∈P

∑
F1,Fi∈P,
F1 6=F2

(v∆(F1)∪∆(F2) − v∆(F1) − v∆(F2))

+
∑

F∈FSd

v∆(F ).

All P ∈ Pard are refinements of the partition {Fv}v∈Pd given by the vertices in the loop and for
all pairs F1, F2 ∈ FSd of flag segments that lie behind one point p ∈ Pd there exists precisely one
partition P ∈ Pard and one element P ∈ P with F1, F2 ∈ P , see above. We conclude (again with
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lemma 1.3.16)

∑
P∈Pard

vP =
∑
P∈Pard

∑
P∈P

∑
F1,F2∈P,
F1 6=F2

(v∆(F1)∪∆(F2) − v∆(F1) − v∆(F2)) +
∑

F∈FSd

v∆(F )


=

∑
p∈Pd

 ∑
F1,F2∈Fp,
F1 6=F2

(v∆(F1)∪∆(F2) − v∆(F1) − v∆(F2))

+ # Pard ·
∑

F∈FSd

v∆(F )

=
∑
p∈Pd

v∆(Fp) + (# Pard−1)
∑

F∈FSd

v∆(F ) ∈W(α[F ],≤[F ]),

where W(α[F ],≤[F ]) is the smallest linear space containing all curves of fine combinatorial type
(α[F ],≤[F ]) which fulfill that the loop is closed, i.e. evA = evB and lp = lq in the notation of
construction 3.3.4. �

In the rest of the section, we will deal with case b) of the lemma above and prove the following
proposition.

Proposition 3.3.13
Let (α,≤) be a regular fine combinatorial type of codimension one in M1,I(∆,Rm) that fulfills

dimV0/V<0 = #FS0 −#P0 − 1.

Then, for all flags [F ] in the loop of α, the weighted subcomplex U(α[F ],≤[F ]) ofM0,I′(∆[F ]),Rm),
whose support contains all curves whose fine combinatorial type is a resolution of (α,≤), is a
tropical fan.

Assume in the rest of this section that α is a regular combinatorial type in PI(∆,Rm) that fulfills

dimV0/V<0 = #FS0 −#P0 − 1

and that F ∈ F(α) is a flag in the loop of α that fulfills vω(F ) 6= 0. If we talk about (α,≤), we
mean a well-spaced combinatorial type in M1,I(∆,Rm) of codimension one that fulfills the same
condition.

A maximal fine combinatorial type (β,≤β) in U(α[F ],≤[F ]) that specializes to (α[F ],≤[F ]) can have
either additional edges in the loop or additional edges outside the loop. Additional edges both
outside and inside the loop are not possible because the codimension of (α,≤) is one and because
well-spacedness is a condition on the lengths of edges outside the loop only. We are going to study
these kinds of resolutions separately, starting with those that have only additional edges inside the
loop.

We will describe the intersection product

X := (lp − lq)∗{0} · (evA− evB)∗(V (α[F ])
c
0) ·X(α[F ])

combinatorially, where the notation is the following.

Notation 3.3.14 (V (α[F ])
c
0, lp, lq, evA, evB , X(α[F ]))

Denote by V (α[F ])
c
0 a complement of the linear space V (α[F ])0 spanned by the direction vectors

of the flags in and at the loop of α[F ]. Remember that U(α[F ]) ⊂ M0,I′(∆[F ],Rm) is the open
subvariety whose support consists of the curves whose combinatorial type specializes to α[F ], and
all facets are equipped with weight one. Denote by lp, lq : U(α[F ])→ R the maps that map a curve
(C, h) ∈ U(α[F ]) onto the lengths of the edges E (between p and p′) and E′ (between q and q′)
which we glue together to close the loop of α[F ], where we use the notation of construction 3.3.4.
Moreover, define evA, evB : U(α[F ]) → Rm as the evaluation maps of A,B ∈ I ′ = I ∪ {A,B}, the
marked points we glue together to close the loop of α[F ].

Denote by X(α[F ]) the open subvariety of U(α[F ]) that consists precisely of the curves whose
combinatorial type specializes to α[F ] and in the specialization process only edges in and at the
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loop are contracted, i.e. the combinatorics away from the loop are the same for all curves in X(α[F ])
and we resolve only vertices in the loop of α[F ].

We will describe the facets of

X := (lp − lq)∗{0} · (evA− evB)∗(V (α[F ])
c
0) ·X(α[F ])

combinatorially and will determine their weights. Our aim is proposition 3.3.25 which describes
the balancing condition at the polyhedron of X containing curves of combinatorial type α[F ]

combinatorially. (We will show that this polyhedron has codimension one in X.) The resulting
equation will be used to prove balancing of U(α[F ],≤[F ]) and thus to prove proposition 3.3.13.

Lemma 3.3.15
Denote the number of bounded edges of α[F ] that are outside the loop by bα[F ]

. Then it holds

dim X(α[F ]) = bα[F ]
+ dimV0 +m+ #P0 − dimV<0 + 2

and

dimX = bα[F ]
+m+ #P0 − dimV<0 + 1.

Proof. Since in X(α[F ]) we allow to resolve only the vertices in the loop of α[F ] and since
combinatorial types in X(α[F ]) have at most #FS0 + 1 edges in the loop (where one edge length
in the loop is determined by lp = lq), it holds

dim X(α[F ]) = bα[F ]
+ #FS0 + 1 +m

= bα[F ]
+ #FS0 + 1 +m+ #P0 −#P0 + dimV<0 − dimV<0

= bα[F ]
+ dimV0 +m+ #P0 − dimV<0 + 2

because dimV0/V<0 = #FS0 − #P0 − 1. (The term +1, instead of −3 appears in the first line
of the equation because of the four marked points xA, xB , xz, x−z in the loop of α[F ] that arise
when cutting the flag [F ] of α in the construction of α[F ].) It follows

dimX = bα[F ]
+m+ #P0 − dimV<0 + 1.

�

Lemma 3.3.16
It holds

suppX ⊂ (evA− evB)−1{0} ∩ (lp − lq)−1{0} ∩ {(D, g) ∈ X(α[F ])|V (D, g)0 = V (α[F ])0}.

Proof. Using corollary 1.2.29 (which states that the pull-back is contained in the preimage),
for (D, g) ∈ supp(X) it holds (evA− evB)(D, g) ∈ V (α[F ])

c
0 and lp(D, g) = lq(D, g). It also holds

(evA− evB)(D, g) ∈ V (α[F ])0 due to the combinatorics of (D, g). (The direction vectors of all flags
in a path around the loop from A to B are contained in V (α[F ])0.) We conclude

evA(D, g)− evB(D, g) ∈ V (α[F ])0 ∩ V (α[F ])
c
0 = {0}.

Let us check that V (D, g)0 = V (α[F ])0 for all (D, g) ∈ supp(X): It holds V (D, g)0 ⊂ V (α[F ])
for all (D, g) ∈ supp(X) since the combinatorial type of (D, g) is a resolution of α[F ]. So let β
be a combinatorial type such that suppX contains curves of combinatorial type β and assume
that V (β)0 ( V (α[F ])0. Then we choose a lattice basis w1, . . . , ws of V (α[F ])

c
0, extend it to a

lattice basis w1, . . . , wr of a complement V (β)c0 of V (β)0, where s is strictly smaller than r, and
to a lattice basis w1, . . . , wm of Rm. For r < i ≤ m, define the functions φi : Rm → R by∑
j∈[m] λj · wj 7→ max{λi, 0}, which fulfill

V (α[F ])
c
0 = supp

 ∏
s<i≤m

φi · Rm
 .
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It therefore holds

(evA− evB)∗(V (α[F ])
c
0) ·X(α[F ]) =

∏
s<i≤m

(evA− evB)∗φi ·X(α[F ]).

All curves (D, g) whose combinatorial type specializes to β fulfill V (D, g)c0 ⊂ V (β)c0. With the
same argument as above, wee see that (evA− evB)(D, g) = 0 if the fine combinatorial type of
(D, g) specializes to β and if (D, g) is contained in the support of

X ′ = (evA− evB)∗(V (β)c0) ·X(α[F ]) =
∏

r<i≤m

(evA− evB)∗φi ·X(α[F ]).

Hence, for s < i ≤ r, the restriction of φi ◦ (evA− evB) to U(β) ∩ supp(X ′) is the zero function.
(U(β) is the fan containing all curves whose combinatorial type specializes to β.) Since

X =
∏
s<i≤r

(evA− evB)∗φi ·X ′,

this implies that U(β) ∩ supp(X) is empty, which is a contradiction. �

Example 3.3.17
We illustrate the result of the previous lemma. Consider the well-spaced combinatorial type α[F ]

in R3. (Again we do not illustrate the cut flag [F ].) Assume that V (α[F ])<0 = 〈e1, e2〉, that

vω(Fi) /∈ V (α[F ])<0 for i ∈ [3] (i.e. V (α[F ])0 = R3) and that the third coordinate of vω(F1) and
vω(F2) is greater than zero. Hence, due to the balancing condition the third coordinate of vω(F3)
is smaller than zero.

F4 F5

F1 F2 F3

α[F ]

Since it holds, according to the last lemma, that V (D, g)0 = V (α[F ])0 for all curves (D, g) ∈
supp(X), curves of the combinatorial type shown below do not appear in the support of X.

Since the loop is closed for all curves in supp(X) and since v(Fi) /∈ V (α[F ])<0 for i ∈ [3], the curves
in supp(X) have one of the following combinatorial types where i1, i2 ∈ [3] and i1 6= i2 and where
j1, j2 ∈ {1, 2} with j1 6= j2. (Since the third coordinate of both vω(F1) and vω(F2) is greater than
zero and since the loop is closed, it holds j1, j2 6= 3 in the figure on the right.)

F4 F5

Fi1

Fi2

Fj1 Fj2

F5F4
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Notation 3.3.18 (σ(β))
Let α[F ] ≤ β be a combinatorial type of curves in X(α[F ]). Then we denote by σ(β) the poly-
hedron which contains all curves (D, g) of combinatorial type β such that the loop is closed, i.e.
(evA− evB)(D, g) = (lp − lq)(D, g) = 0. σ(β) may be empty.

Corollary 3.3.19
σ(α[F ]) has codimension one in X.

Proof. Due to lemma 3.3.16, σ(α[F ]) is contained in supp(X). Due to lemma 3.3.15, it has
codimension one. �

If α[F ] ≤ β is a combinatorial type and if there exist curves of combinatorial type β in X, β has
- compared to α[F ] - either additional edges inside or outside the loop. This is true because the
intersection product X does not impose conditions on the edges outside the loop and because α[F ]

has codimension one.

We study first the facets σ(β) of X that fulfill that β has, compared to α[F ], only additional edges
inside the loop.

Notation 3.3.20 (A ∈ Par0(α[F ]))
Due to

dimV (α[F ])0/V (α[F ])<0 = #FS0(α[F ])−#P0(α[F ])− 1,

the weighted direction vectors of the flags [F ] ∈ FS0 at the loop of α[F ] fulfill only one relation
modulo V<0 of the type ∑

[F ]∈FS0

λ[F ] · vω([F ]) ∈ V<0(α[F ])

in addition to the balancing condition at the vertices v ∈ V0 in the loop of α[F ]. It follows
that Par0(α[F ]) (see construction 3.2.26) contains precisely one partition that strictly refines the
partition {Fv}v∈V0

given by the vertices in the loop of α[F ]. Denote this unique element by

A ∈ Par0(α[F ]).

Lemma 3.3.21
Let α[F ] 6= β be a combinatorial type in the intersection product X that has, compared to α[F ],
only additional edges inside the loop. Assume σ(β) 6= ∅. Then, the partition of the flags at the
loop of β given by the vertices in the loop of β is A, i.e.

A = {Fv}v∈V0(β),

where we identify a flag at the loop of β with the corresponding flag at the loop of α[F ]. Moreover,
the weight of σ(β) in X is

2 · ind(α[F ]).

Proof. Due to dimV (α[F ])0/V (α[F ])<0 = #FS0(α[F ])−#P0(α[F ])−1, the weighted direction
vectors of the flags at the loop of α fulfill only one relation modulo V (α[F ])<0 in a addition to
balancing at the vertices in the loop, namely the relation that defines A.

Since β has, compared to α[F ], additional edges only in the loop of α[F ], it holds V (β)0 = V (α[F ])0.
Moreover, each flag [Gβ ] at the loop of β corresponds to a unique flag [G] at the loop of α[F ]. The
two flags have the same weighted direction vector and we denote both of them by [G].

There exist pairwise different λ[v] ∈ R such that

vω([F ]) =
∑

[v]∈V0(β)

λ[v] ·
∑

[(p,E)]∈Fv(β)

ω(E) · v([(p,E)])

 ∈ V (α[F ])<0,

see lemma 3.2.15. Since β 6= α[F ], it follows

A = {Fv(β)}v∈V0(β)

and the weighted direction vectors of the flags at the loop of β fulfill no relation modulo V (β)<0

in addition to balancing at the vertices in the loop.
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Let us calculate the weight of a facet σ(β) of X. Since the weighted direction vectors of the flags
at the loop of β fulfill no relation modulo V (β)<0 in addition to balancing at the vertices in the
loop, it holds

dimV (β)0/V (β)<0 = #FS0(β)−#P0(β).

Since the pull-back is contained in the preimage and since V (α[F ])0 = V (β)0, for small generic
ε > 0, the intersection product

Xε = (lp − lq)∗{0} · (evA− evB)∗(V (α[F ])
c
0 + ε) ·X(α[F ])

is an intersection of hyperplanes in a unique facet of X(α[F ]), i.e. all vertices in the loop of β are
3-valent. Hence, the weight of the unique facet σε of Xε is given by the index of the restriction of
the map (lp − lq)× (evA− evB) to σ, see lemma 1.2.9. The index of this map is

2 · ind(L(β)<0),

where L(β)<0 is the lattice spanned by the weighted direction vectors of the flags in the loop of
β. This is true because we run around the loop of β in order to get from the marked point xA
to the marked point xB and because the factor 2 comes up due to the condition lp = lq. It holds
L(β)0 = L(β)<0 because the vertices in the loop of β are 3-valent. Since the weighted direction
vectors of flags at the loop of β are the same as those of flags at the loop of α[F ], it holds moreover
that

ind(L(β)0) = ind(L(α[F ])0) = ind(α).

Since V (α[F ])
c
0 and ε+V (α[F ])

c
0 are rationally equivalent, for small ε also X and Xε are rationally

equivalent, see 1.2.37. It follows that the weight of σ(β) in X coincides with the weight of σε in
Xε, which is 2 · ind(α[F ]). �

Next, we study the facets σ(β) of X that fulfill that β has, compared to α[F ], only additional edges
outside the loop. They will be given by

(α[F ])P′

for P ′ ∈ PP0(α[F ]) ⊂ P0(α[F ]), where PP0(α[F ]) is defined below. See also example 3.3.17.

Notation 3.3.22 ( I(P,P ′), P0(α[F ]), PP0(α[F ]), F (P ′)1, F (P ′)2)

For partitions P,P ′ ∈ P0(α[F ]) = P({F[v]}[v]∈P0(α[F ])), we denote by I(P,P ′) the coarsest common

refinement of P and P ′, i.e.

I(P,P ′) = {P1 ∩ P2 6= ∅|P1 ∈ P, P2 ∈ P ′}.

Denote by P0(α[F ]) ∈ P0(α[F ]) the finest partition P0(α[F ]) = {{[F ]}|[F ] ∈ FS0(α[F ])} of the set
of flags at the loop of α[F ].

We define PP0(α[F ]) as the set of partitions in P0(α[F ]) that arise from the finest partition P0(α[F ])
by uniting two flags which lie behind the same vertex in the loop of α[F ] and which are contained
in different elements of A, i.e.

PP0(α[F ]) = {P ∈ P0(α[F ])|#I(P,P0(α[F ])) = #P + 1,#I(P,A) = #P + 1}.

For P ′ ∈ PP0(α[F ]), we denote by F (P ′)1, F (P ′)2 ∈ FS0(α[F ]) the two different flags at the loop of

α[F ] that fulfill {F (P ′)1, F (P ′)2} ∈ P ′. All other flags F ∈ FS0(α[F ]) fulfill {F} ∈ P ′.

Lemma 3.3.23
Let α[F ] 6= β be a combinatorial type in X(α[F ]) that has, compared to α[F ], only additional edges
outside the loop. Assume moreover V (β)0 = V (α[F ])0. Then, there exists P ′ ∈ PP0(α[F ]) such that

β = (α[F ])P′ , and it holds V (αP)0 = V (α[F ])0 for all P ∈ PP0(α[F ]). Moreover, the weight of σ(β)
in X is

2 · ind(β) = 2 · ind((α[F ])P′).
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Proof. First, we show that V (αP)0 = V (α[F ])0 for all P ′ ∈ PP0(α[F ]):

Let P ′ ∈ PP0(α[F ]). It holds

dimV (α[F ])0/V (α[F ])<0 = #FS0(α[F ])−#P0(α[F ])− 1,

and the weighted direction vectors of flags at the loop of α[F ] fulfill only one relation modulo
V (α[F ])0 in addition to balancing at the vertices in the loop of α[F ], namely the one that defines
A. There exist two different A1, A2 ∈ A such that F (P ′)1 ∈ A1 and F (P ′)2 ∈ A2. It follows that
the weighted direction vectors

vω([F ]) with [F ] ∈ FS0(α[F ]) \ {F (P ′)1, F (P ′)2} and (vω(F (P ′)1) + vω(F (P ′)2))

of flags at the loop of αP′ fulfill no relation modulo V ((α[F ])P′)<0 ⊂ V (α[F ])<0 in addition to
balancing at the vertices in the loop of (α[F ])P′ , i.e.

dimV ((α[F ])P′)0/V ((α[F ])P′)<0 = #FS0((α[F ])P′)−#P0((α[F ])P′).

Due to #FS0((α[F ])P′) = #FS0(α[F ]) − 1, #P0((α[F ])P′) = #P0(α[F ]) and V ((α[F ])P′)<0 =
V (α[F ])<0, it follows

dimV ((α[F ])P′)0 = dimV (α[F ])<0 + #FS0(α[F ])−#P0(α[F ])− 1 = dimV (α[F ])0.

Since V ((α[F ])P′)0 ⊂ V (α[F ])0, we conclude V ((α[F ])P′)0 = V (α[F ])0.

Let now β be as in the statement of the lemma. Since β has, compared to α[F ], only additional

edges outside the loop, there exists P ′ ∈ P0(α[F ]) such that β = (α[F ])P′ . Since V (β)0 = V (α[F ])0

and

dimV (α[F ])0/V (α[F ])<0 = #FS0(α[F ])−#P0(α[F ])− 1,

it holds that #P ′ = #FS0(α[F ]) − 1 and that P ′ is not finer than A ∈ Par0(α[F ]). We conclude
P ′ ∈ PP0(α[F ]).

With the argument with which we have already calculated the weight of a facet of X in the last
lemma, it follows that the weight of σ(β) = σ((α[F ])P′) in X is

2 · ind(β) = 2 · ind((α[F ])P′).

�

Corollary 3.3.24
It holds

suppX = (evA− evB)−1{0} ∩ (lp − lq)−1{0} ∩ {(D, g) ∈ X(α[F ])|V (D, g)0 = V (α[F ])0}.

Proof. Since σ(α[F ]) has codimension one in X (see corollary 3.3.19) and since the intersec-
tion product imposes only condition on the edges inside the loop, a maximal combinatorial type
β in X has, compared to α[F ], either additional edges inside or outside the loop, but not both.
Hence, the claim follows from lemmata 3.3.16, 3.3.21 and 3.3.23. �

The following proposition is a combinatorial description of the balancing condition at the poly-
hedron σ(α[F ]) of X containing curves of combinatorial type α[F ] which fulfill that the loop is
closed. Remember that X(α[F ]) contains all curves whose combinatorial type specializes to α[F ]

and in the specialization no edges outside the loop are contracted. Remember moreover that it
holds {F (P ′)1, F (P ′)2} ∈ P ′ (see notation 3.3.22) for all partitions P ′ ∈ PP0(α[F ]) of the flags at
the loop of α[F ].

Proposition 3.3.25
Let α[F ] ≤ α1, . . . , αi be the combinatorial types in X(α[F ])

• that have, compared to α[F ], only additional edges inside the loop,
• that fulfill A = {Fv}v∈V0(αj) and
• that fulfill that the loop of αj can be closed, i.e. there exists a curve (D, g) of combinatorial

type αj that fulfills evA(D, g) = evB(D, g) and lp(D, g) = lq(D, g).
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For j ∈ [i], let vαj be a representative of the primitive normal vector uσ(αj)/σ(α[F ]) that has no
components outside the loop, i.e. only edges inside the loop. Then it holds

ind(α[F ]) ·
i∑

j=1

vαj +
∑

P′∈PP0(α[F ])

ind((α[F ])P′) ·

 ∑
j1∈∆[F ](F (P′)1),

j2∈∆[F ](F (P′)2)

v{j1,j2}

 ∈W(σ(α[F ])),

where α[F ] is the specialization of α[F ] in which precisely the edges outside the loop are contracted
and where W(σ(α[F ])) is the smallest linear space containing all curves of combinatorial type α[F ]

such that the loop is closed.

Proof. The polyhedron σ(α[F ]) has codimension one in X, see corollary 3.3.19. Hence, X is
balanced at σ(α[F ]). It follows from the two previous lemmata that the facets of X are given by
σ(α1), . . . , σ(αi) and by σ((α[F ])P′), P ′ ∈ PP0(α[F ]). Their weight is 2 · ind(αj) = 2 · ind(α[F ]) and

2 · ind((α[F ])P′), respectively. A representative of the normal vector uσ((α[F ])P′ )/σ(α[F ]) is given by

v∆[F ](F (P′)1)∪∆[F ](F (P′)2),

where F (P ′)1 and F (P ′)2 are the two distinguished flags at the loop of α[F ] that fulfill

{F (P ′)1, F (P ′)2} ∈ P ′,

see construction 3.2.23 and notation 3.3.22. Another representative is given by∑
j1∈∆[F ](F (P′)1),

j2∈∆[F ](F (P′)2)

v{j1,j2},

since

v∆[F ](F (P′)1)∪∆[F ](F (P′)2) =

 ∑
j1∈∆[F ](F (P′)1),

j2∈∆[F ](F (P′)2)

v{j1,j2}

+ v∆[F ](F (P′)1) + v∆[F ](F (P′)2).

Since X is balanced at σ(α[F ]), it follows that

s =
∑
j∈[i]

ind(α[F ])·vσ(αi)/σ(α[F ])+
∑

P′∈PP0(α[F ])

ind((α[F ])P′)·

 ∑
j1∈∆[F ](F (P′)1),

j2∈∆[F ](F (P′)2)

v{j1,j2}

 ∈W(σ(α[F ])).

Since the curves vαj , which are representatives of the normal vectors uσ(αj)/σ(α[F ]), were chosen in
a way that they contain no components outside the loop and since∑

j1∈∆[F ](F (P′)1),

j2∈∆[F ](F (P′)2)

v{j1,j2}

contains no edges that appear outside the loop of α[F ], also s contains no edges outside the loop,
i.e. s ∈W(σ(α[F ])). �

As a next step, we study the set of maximal fine combinatorial types inM1,I(∆,Rm)reg that have
- compared to (α,≤) - only additional edges outside the loop. Remember that

dimV0(α)/V<0(α) = #FS0(α)−#P0(α)− 1,

that (α,≤) is a regular fine combinatorial type of codimension one in M1,I(∆,Rm) and that [F ]
is a flag in the loop of α that fulfills v([F ]) 6= 0.

The following notation is used to describe the well-spaced resolutions of (α[F ],≤[F ]) that have only
additional edges outside the loop. For simplifying notation, we set (γ,≤) := (α[F ],≤[F ]).
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We are interested in the set W(γ) ⊂ P0(γ) defined below because a fine combinatorial type
(γW ,≤W) is well-spaced if and only if W ∈W(γ), see lemma 3.3.28.

Notation 3.3.26 (W(γ))
Remember that A is the unique element of Par0(γ) that is strictly finer than {Fv}v∈V0(γ). Define

W(γ) = {W ∈ P0(γ)|W 6= P0(γ),#(A ∩W ) ≤ 1∀W ∈ W ∀A ∈ A},
where P0(γ) = {{[F ]}}[F ]∈FS0(γ). We just write W if no confusion can occur.

Example 3.3.27
Here is an example of W(γ) for the following combinatorial type γ in R4 for which we assume
dimV (γ)<0 = 2 and dimV (γ)0 = 4.

F5 F6

F1 F2 F4F3

• Assume that A = {{Fi}|i ∈ [6]} and that v(Fi) /∈ V (γ)<0) for i ∈ [4]. Since there do not
exist vertices outside the loop, γ is a well-spaced combinatorial type and it has codimension
one in the corresponding moduli space. It holds

W(γ) = P0(γ) \ {P0(γ)}.
The fine combinatorial types (γW ,≤W) for W ∈ W(γ) are shown in figure 13, where
i1, i2 ∈ [4] with i1 6= i2 and i ∈ [4]. The bounded edges outside the loop in the second
curve from the left both have the same length.

Fi1Fi2 Fi1Fi2

Fi

F1 F2 F4F3

Figure 13.

• Assume that A = {{F1, F3}, {F2, F4}, {F5}, {F6}} and v(Fi) /∈ V (α[F ]) for i ∈ [4]. Again
γ is well-spaced and has codimension one in the corresponding moduli space. The com-
binatorial types (γW ,≤W) for W ∈ W(γ) are shown in figure 14, where i1 ∈ {1, 3} and
i2 ∈ {2, 4}. The bounded edges outside the loop in the curve on the left both have the
same length.

Fi1Fi2 Fi1Fi2

Figure 14.
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Lemma 3.3.28
Let W ∈ P0(γ) be a partition of the flags at the loop of γ that is finer than the partition given by
the vertices in the loop of γ. Then (γW ,≤W) is well-spaced if and only if W ∈W(γ).

Proof. Let (β,≤β) be a well-spaced fine combinatorial type of curves that specializes to
(γ,≤) and that has only additional edges outside the loop compared to (γ,≤). Then there exists a
unique P ∈ P0(γ) such that (β,≤β) = (γP ,≤P). Assume that there exists P ∈ P and A ∈ A with
#(A ∩ P ) ≥ 2. Denote by [F1], [F2] two different elements of A ∩ P . Since dimV (γ)0/V (γ)<0 =
#FS0(γ)−#P0(γ)− 1 and since there exists a vertex [v] ∈ V0 such that [F1], [F2] ∈ F[v], it holds〈

V (γ)<0 ∪ {v([F ])|[F ] ∈ FS0(γ) \ {[F1], [F2]}}
〉
( V (γ)0.

Hence, there exists a hyperplane H ⊂ Rm that contains all v([F ]), [F ] ∈ FS0(γ), except v([F1])
and v([F2]). This is a contradiction to the well-spacedness of (γP ,≤P).

Let now W ∈ W(γ) and let (CW , hW) be of fine combinatorial type (γW ,≤W). If there exists
no vertex outside the loop of γW , (γW ,≤W) is well-spaced. So assume that there exists a vertex
outside the loop of γW and let the minimal distance of a vertex in CW to the loop be d. The
combinatorics of CW at distance d to the loop is given by the partitionW. A point P ∈ supp(CW)
with distance d to the loop corresponds to an element W ∈ W and the flags behind the point p
correspond to the flags [F ] ∈ W , in particular these corresponding flags have the same weighted
direction vector.

There exist pairwise different λA, A ∈ A, such that∑
A∈A

λA ·
∑

[F ]∈A

vω([F ]) ∈ V (γ)<0.

It holds #A ∩W ≤ 1 for all A ∈ A and all W ∈ W. Due to the balancing condition at the points
p ∈ Vd(CW) (

∑
F∈Fp vω(F ) ∈ V<d(CW)), there exist hence pairwise different λF ∈ R such that∑

[F ]∈FS0(γ)

λW ·
∑

[F ]∈W

vω([F ]) ∈ V (CW , hW)<d ⊃ V (γ)<0.

It follows that (CW , hW) and (αW ,≤W) are well-spaced. �

Lemma 3.3.29
Let l, k, a ∈ N with 1, a ≤ l ≤ k. Then it holds

l∑
i=0

(−1)i
(
l

i

)
k!

(k − i)!
(k + l − i− a)! =

{
0, if a > 0

k! · l!, if a = 0.

Proof. We denote the constant term of a Laurent polynomial by CT(·). It holds

l∑
i=0

(−1)i
(
l

i

)
k!

(k − i)!
(k + l − i− a)! =

l∑
i=0

(−1)i
(
l

i

)(
k + l − i− a

k − i

)
· k! · (l − a)!

= CT

(
l∑
i=0

(−1)i
(
l

i

)
(1 + y)k+l−i−a

yk−i

)
· k! · (l − a)!

= CT

(
l∑
i=0

(−1)i
(
l

i

)
yi

(1 + y)i
(1 + y)k+l−a

yk

)
· k! · (l − a)!

= CT

((
1− y

(1 + y)

)l
(1 + y)k+l−a

yk

)
· k! · (l − a)!

= CT

((
1

1 + y

)l
(1 + y)k+l−a

yk

)
· k! · (l − a)! = CT

((
(1 + y)k−a

yk

))
· k! · (l − a)!

=

{
0, if a > 0

k! · l!, if a = 0.
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�

The following notation appears in the proof of proposition 3.3.13 and in the next two lemmata
needed for this proof.

Notation 3.3.30 (n(W, P ), p(W, P ), ω(W,P))
Let W ≤ P ∈ P0(γ). For P ∈ P we define

a) n(W, P ) = #{W ∈ W|W ⊂ P} as the number of elements of W contained in P ,
b) p(W, P ) = (−1)n(W,P )−1(n(W, P )− 1)!.
c) ω(W,P) =

∏
P∈P p(W, P ).

Lemma 3.3.31
Let P ∈ P0(γ) such that #I(A,P) > #P + 1, i.e. the coarsest common refinement of P and of
the distinguished partition A ∈ Par0 has at least two elements more than P. Choose two flags
F1, F2 ∈ FS0 at the loop of γ. Then it holds∑

W∈W(γ):W≤P,
∃W∈W:F1,F2∈W

ω(W,P) = 0,

i.e. the sum runs over all partitions W ∈ W which are finer than P and which fulfill that there
exists an element W ∈ W that contains F1 and F2.

Example 3.3.32
Let us illustrate the previous lemma with the example of the combinatorial type γ in R4 shown in
figure 15. Assume dimV (γ)<0 = 2 and V (γ)0 = R4. Assume moreover

A = {{F1, F3}, {Fi}|i ∈ {2, 4, 5, 6}} and P = {{F1, F2, F3, F4}, {F5}, {F6}}.

It holds I(A,P) = A and hence #I(A,P) = 5 = #P+2. Let WP ⊂W(γ) be the set of partitions

F5 F6

F1 F2 F4F3

Figure 15.

W ∈ W(γ) that are finer than P (i.e. W ≤ P) and that fulfill that there exists W ∈ W with
F1, F2 ∈W . It holds WP = {Wi}i∈[3] with

• W1 = {{F1, F2}} ∪ {{Fi}|i ∈ {3, 4, 5, 6}},
• W2 = {{F1, F2}, {F3, F4}, {F5}, {F6}} and
• W3 = {{F1, F2, F4}} ∪ {{Fi}|i ∈ {3, 5, 6}}.

The combinatorial types γWi
are illustrated below.

F4F3

F2F1

γW1

F1 F2 F3 F4

γW2

F3

F1 F2 F4

γW3
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The only element P ∈ P with #P > 1 is P = {1, 2, 3, 4}. Thus, it holds∑
W∈WP

ω(W,P) =
∑
i∈[3]

∏
P∈P

(
(−1)n(Wi,P )−1(n(Wi, P )− 1)!

)
= (−1)3−1(3− 1)! + 2 · (−1)2−1(2− 1)!

= 0

In the notation of the proof below, it holds Q = {F1, F2, F3, F4}, A1 = {F1, F3}, A2 = {F2} and
A = {F4}.

Proof of 3.3.31. Denote by WP the subset of W(γ) that consists of all W ∈W(γ) which
refine P and for which there exists W ∈ W with F1, F2 ∈ W , i.e. WP is the set over which the
sum in the statement of the lemma runs. Let W ∈ WP ⊂ W(γ). Then it holds #(A ∩W ) ≤ 1
for all A ∈ A and all W ∈ W. Since there exists W ∈ W with F1, F2 ∈ W , there exist different
A1, A2 ∈ A such that F1 ∈ A1 and F2 ∈ A2. Due to #I(A,P) > #P + 1, there exist moreover
A1, A2 6= A ∈ A and Q ∈ P such that ∅ 6= A ∩Q ( Q. Define

WA∩Q =
{
W ∈WP |∀F ∈ A ∩Q : {F} ∈ W

}
,

i.e. all elements of A ∩Q are contained in separate sets of order one. For W ∈WA∩P define WW

as the set{
W ≤ Y ∈WP |∀Y ∈ Y : (∃W ∈ W and F ∈ A ∩Q : Y = W ∪ {F} or Y = W or Y = {F})

}
,

i.e. WW contains the partitions W ≤ Y ≤ P contained in WP which are constructed from
W ∈WA∩Q by uniting elements of W contained in Q \A with elements of W contained in A∩Q.

Remember that for W ′ ∈ WP ⊂ W(γ) it holds #(A′ ∩W ) ≤ 1 for all A′ ∈ A and all W ∈ W ′.
Since all elements of WP are finer than P and since F1, F2 /∈ A, it holds

WP =
⋃̇
W∈WA∩Q

WW .

Fix an arbitrary W ∈ WA∩Q. It holds l := #(A ∩ Q) > 0 and k := {W ∈ W|W ⊂ Q} − l ≥ 1
because ∅ ( A ∩ Q ( Q. k is the number of elements of W that are contained in Q and whose
intersection with A is empty and k + l elements of W are contained in Q. Assume l ≤ k. All
elements of WW are of the following form:

Choose 0 ≤ i ≤ l elements {F1}, . . . , {Fi} ∈ W with {F1, . . . , Fi} ⊂ A ∩ Q and take the union
{Fj} ∪Wj with pairwise different W1, . . .Wi ∈ W that fulfill Wj ⊂ Q and Wj ∩A = ∅ (j ∈ [i]).

There are
(
l
i

)
· k!

(k−i)! possibilities to do this. The resulting partition Y ∈WW has precisely k+ l− i
elements which are subsets of Q. We get∑

Y∈WW

ω(Y,P)

=
∑
Y∈WW

∏
P∈P

(−1)n(Y,P )−1(n(Y, P )− 1)!

=

l∑
i=0

(
l

i

)
k!

(k − i)!
·

(−1)(k+l−i)−1 · ((k + l − i)− 1)!

 ∏
P∈P,
P 6=Q

p(W, P )




= (−1)k+l−1 ·

 ∏
P∈P,
P 6=Q

p(W, P )

 · l∑
i=0

(
(−1)i ·

(
l

i

)
k!

(k − i)!
· (k − l − i− 1)!

)
3.3.29

= 0.
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If k ≤ l, we reverse the roles: We choose 0 ≤ i ≤ k elements W1, . . . ,Wi ∈ W that fulfill
W1, . . . ,Wi ⊂ Q and W1, . . . ,Wi ∩ (A ∩ Q) = ∅ and take the union Wj ∪ {Fj} with i elements
{F1}, . . . , {Fi} ∈W that fulfill Fj ∈ A ∩Q, j ∈ [i]. Then we get the same result.

The claim follows because

WP =
⋃̇
W∈WA∩Q

WW .

�

Remark 3.3.33
Assume that P ′ ∈ P0(γ) and #I(P ′,A) = P ′ + 1. Then there exist two distinguished elements
P1, P2 ∈ I(P ′,A) and different A1, A2 ∈ A which fulfill (P1 ∪P2) ∈ P ′, P1 ⊂ A1 and P2 ⊂ A2. For
all elements P1, P2 6= P ∈ I(A,P ′), there exist P ′ ∈ P ′ and A ∈ A with P = P ′ ⊂ A.

Lemma 3.3.34
Let P ′ ∈ P0(γ) such that #I(A,P ′) = #P ′+1. Denote the two distinguished elements of I(A,P ′)
by P1 and P2, see the remark above. Let F1 ∈ P1 and F2 ∈ P2. Then it holds∑

W∈W,W≤P′,
∃W∈W:F1,F2∈W

ω(W,P ′) =
∏

P∈I(A,P′)

(−1)#P−1(#P − 1)!.

Example 3.3.35
Let us illustrate the previous lemma with the example of the combinatorial type γ in R4 from
example 3.3.32. Assume again dimV (γ)<0 = 2 and V (γ)0 = R4. Assume this time that

A = {{F1, F3}, {F2, F4}, {F5}, {F6}} and P ′ = {{F1, F2, F3, F4}, {F5}, {F6}}.
It holds I(A,P ′) = A and hence #I(A,P ′) = 4 = #P ′ + 1.

Let WP′ ⊂W(γ) be the set of partitions in W ∈W(γ) that are finer than P ′ (i.e. W ≤ P ′) and
that fulfill that there exists W ∈ W with F1, F2 ∈W . It holds WP′ = {Wi}i∈[2] with

W1 = {{1, 2}} ∪ {{Fi}|i ∈ {3, 4, 5, 6}} and W2 = {{F1, F2}, {F3, F4}, {F5}, {F6}}.
The combinatorial types γW1 , γW2 are illustrated below.

F4F3

F2F1

γW1

F1 F2 F3 F4

γW2

The only element P ∈ P ′ with #P > 1 is P = {1, 2, 3, 4}. It holds∑
W∈WP′

ω(W,P ′) =
∑
i∈[2]

∏
P∈P′

(
(−1)n(Wi,P )−1(n(Wi, P )− 1)!

)
= (−1)3−1(3− 1)! + (−1)2−1(2− 1)!

= 1

=
∏

P∈I(A,P′)

(−1)#P−1(#P − 1)!

In the notation of the proof below, it holds Q = {F1, F2, F3, F4}, P1 ⊂ A1 = {F1, F3} and
P2 ⊂ A2 = {F2, F4}.

Proof of lemma 3.3.34. Define

WP′ :=
{
W ∈W|W ≤ P ′, ∃W ∈ W : F1, F2 ∈W

}
as the set over which the sum in the lemma runs. Define Q = P1 ∪ P2 ∈ P ′ and let A1, A2 ∈ A be
the elements that fulfill P1 ⊂ A1 and P2 ⊂ A2.
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According to lemma 3.3.28, it holds that #A ∩W ≤ 1 for all W ∈ W ∈ WP′ and A ∈ A. Let
W ∈WP′ . Since W ≤ P ′ and since for all Q 6= P ∈ P ′ there exists A ∈ A with P ⊂ A, it holds
for all flags F ∈ FS0(γ) \ Q at the loop of γ that are not contained in Q that {F} ∈ W. Set
l1 := #P1 − 1, l2 := #P2 − 1, i.e. #Q = l1 + l2 + 2. Assume without loss of generality l1 ≤ l2. All
elements W ∈WP′ are of the following form:

We start with the partition

{{F}|F ∈ FS0 \ {F1, F2}} ∪ {{F1, F2}} ∈ WP′ .

Then we choose 0 ≤ i ≤ l1 elements

F 1
1 , . . . , F

1
i ∈ P1 \ {F1} = (A1 ∩Q) \ {F1}

and unite them with pairwise different elements

F 2
1 , . . . , F

2
i ∈ P2 \ {F2} = (A2 ∩Q) \ {F2}.

There are
(
l1
i

)
· l2!

(l2−i)! possibilities to do this. The resulting partition has l1 + l2 + 1− i elements

that are contained in Q. It follows

=
∑

W∈WP′

ω(W,P ′)

=

l1∑
i=0

(
l1
i

)
l2!

(l2 − i)!

(−1)l1+l2−i · (l1 + l2 − i)!
∏

P∈P′,Q6=P

p(W, P )


3.3.29

= (−1)l1+l2 · l1! · l2! ·
∏

P∈P′,Q6=P

(−1)#P−1(#P − 1)!

=
∏

P∈I(A,P′)

(−1)#P−1(#P − 1)!

�

Proof of proposition 3.3.13. Remember that (α,≤) is a regular fine combinatorial type
in M1,I(∆,Rm) and that [F ] ∈ F(α) is a flag in the loop of α which fulfills v([F ]) 6= 0. (α,≤) has
codimension one and it holds

dimV (α)0/V (α)<0 = #FS0(α)−#P0(α)− 1.

Remember that we denote (α[F ],≤[F ]) by (γ,≤), for simplifying notation.

The set of maximal fine combinatorial types in U(γ,≤) that specialize to (γ,≤) and that, compared
to (γ,≤), have only additional edges outside the loop, is given by

{(γW ,≤W)|W ∈W(γ)},

see lemma 3.3.28. The weight of a facet of U(γ,≤) containing curves of fine combinatorial type
(γW ,≤W) is ω(γW), see definition 3.3.2. For W ∈ W(γ), a representative of the normal vector
u(γW ,≤W)/(γ,≤) is given by ∑

W∈W
v∆[F ](W ),

where ∆[F ](W ) is the set of labels in ∆[F ] that lie behind the flags G ∈W seen from the loop and
where v∆[F ](W ) is a curve that has only one edge of length one and such that all leaves labeled by

i ∈ ∆[F ](W ) sit at one vertex of the edge and all leaves labeled by ∆[F ] \∆[F ](W ) sit at the other
vertex, see definition 1.3.15 and construction 3.2.23.

For a partition P ′ ∈ P0(γ) of the flags at the loop of γ, #I(A,P ′) = #P ′ implies that P ′ is finer
than A. Moreover, (γP′ ,≤P′) is not well-spaced if P ′ is finer than A (except if P ′ = {{F}|F ∈
FS0(γ)} /∈W(γ), but then (γP′ ,≤P′) = (γ,≤)). We conclude that #I(A,P ′) ≤ #P ′ + 1 implies
#I(A,P ′) = #P ′+ 1 if there exists a “well-spaced” partition W ∈W(γ) that is finer than P ′, see
lemma 3.3.28.
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For P ∈ P0(γ) with P ≤ A define

PP(γ) := {P ′ ∈ P0(γ)|#I(A,P ′) = #P ′ + 1,#I(P ′,P) = #P + 1},

i.e. PP(γ) consists of the partitions P ′ ∈ P0(γ) that arise from P by uniting two elements P1, P2 ∈
P whose flags all lie behind one vertex and for which exist two different A1, A2 ∈ A with P1 ⊂ A1

and P2 ⊂ A2. In particular the partitions in PP(γ) are finer than the partition {F[v]}[v]∈V0(γ)

given by the vertices in the loop of γ.

For P ′ ∈ PP(γ) we denote the two distinguished elements of P by P (P ′)1 and P (P ′)2 - they fulfill
that there exist different A1, A2 ∈ A with P (P ′)1 ⊂ A1 and P (P ′)2 ⊂ A2 and that there exists a
vertex [v] ∈ V0(γ) such that A1, A2 ⊂ F[v](γ). Moreover, it holds I(A,P ′) = P for all P ′ ∈ PP(γ)
and ⋃̇

P∈P0(γ),P≤A
PP(γ) = {P ′ ∈ P0(γ)|#I(A,P ′) ≤ #P ′ + 1, ∃W ∈W :W ≤ P}.

With v∆(F1,F2) := v∆[F ](F1)∪∆[F ](F2) − v∆[F ](F1) − v∆[F ](F2) for F1, F2 ∈ FS0 we get:

∑
W∈W

# Aut(γ) · ω(γW) ·

( ∑
W∈W

v∆[F ](W )

)

=
∑
W∈W

∑
P∈P0(γ),
W≤P

ω(W,P) · ind(γP) ·

( ∑
W∈W

v∆[F ](W )

)

1.3.16
=

∑
F1,F2∈FS0
F1 6=F2

∑
P∈P0(γ),

#I(A,P)>#P+1

ind(γP)

 ∑
W∈W,W≤P,

∃W∈W:F1,F2∈W

ω(W,P)

 · v∆(F1,F2)

+
∑

F1,F2∈FS0
F1 6=F2

∑
P∈P0(γ),
P≤A

∑
P′∈PP(γ)

ind(γP′)

 ∑
W∈W,W≤P′,
∃W∈W:F1,F2∈W

ω(W,P ′)

 · v∆(F1,F2)

+
∑

[G]∈FS0

 ∑
P∈P0(γ)

∑
W∈W,
W≤P

ω(W,P)

 · v∆[F ]([G])

The term ∑
[G]∈FS0

 ∑
P∈P0(γ)

∑
W∈W,
W≤P

ω(W,P)

 · v∆[F ]([G])

lies in the vector space W(γ,≤) spanned by the curves of combinatorial type (γ,≤) for which the
loop is closed. Moreover, it follows from lemma 3.3.31 that

∑
F1,F2∈FS0
F1 6=F2

∑
P∈P0(γ),

#I(A,P)>#P+1

ind(γP)

 ∑
W∈W,W≤P,

∃W∈W:F1,F2∈W

ω(W,P)

 · v∆[F ](F1,F2) = 0.

For a partition P ∈ P0(γ) that is finer than A, i.e. P ≤ A, let P ′ ∈ PP(γ). Hence, it holds
#I(A,P ′) = #P ′+1 and I(A,P ′) = P. Remember that we denote the two distinguished elements
of P whose union is an element of P ′ by P (P ′)1, P (P ′)2 ∈ P, i.e. {P (P ′)1, P (P ′)2} ∈ P ′. For
F1 ∈ P (P ′)1 and F2 ∈ P (P ′)2 we get with lemma 3.3.34 ∑

W∈W,W≤P′,
∃W∈W:F1,F2∈W

ω(W,P)

 · v∆(F1,F2) =

(∏
P∈P

n(P )

)
· v∆(F1,F2).
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Otherwise, if two flags F1, F2 ∈ FS0(γ) do not fulfill that they are contained in different elements
of {P (P ′)1, P (P ′)2} ⊂ P, there does not exist W ∈ W(γ) and W ∈ W such that F1, F2 ∈ W .
Therefore, it holds in this case ∑

W∈W,W≤P′,
∃W∈W:F1,F2∈W

ω(W,P)

 · v∆(F1,F2) = 0.

It follows

∑
F1,F2∈FS0
F1 6=F2

∑
P∈P0(γ),
P≤A

∑
P′∈PP(γ)

ind(γP′)

 ∑
W∈W,W≤P′,
∃W∈W:F1,F2∈W

ω(W,P ′)

 · v∆(F1,F2)

=
∑

P∈P0(γ),
P≤A

∑
P′∈PP(γ)

(∏
P∈P

n(P )

)
· ind(γP′) ·

 ∑
F1∈P (P′)1,
F2∈P (P′2)

v∆(F1,F2)

 .

Let (γ1,≤1), . . . , (γi,≤i) be the maximal combinatorial types that are coarser than (γ,≤) and that
have only additional edges in the loop, i ∈ N. For j ∈ [i], let vγj be representatives of the normal
vectors u(γj ,≤j)/(γ,≤) that have no components outside the loop.

We conclude that

∑
j∈[i]

# Aut(γj) · ω(γj) · vγj +
∑

W∈W(γ)

# Aut(γW) · ω(γW) ·

( ∑
W∈W

v∆[F ](W )

)

=
∑

P∈P0(γ),
P≤A

(∏
P∈P

n(P )

)
·

[
ind(γP) ·

 i∑
j=1

vγj

+
∑

P′∈PP(γ)

ind(γP′) ·

 ∑
F1∈P (P′)1,
F2∈P (P′)2

v∆(F1,F2)

]

+
∑

[G]∈FS0(γ)

 ∑
P∈P0(γ)

∑
W∈W,
W≤P

ω(W,P)

 · v∆[F ]([G])

Note that for all P ≤ A and P ′ ∈ PP′ , it holds in the last term above∑
F1∈P (P′)1,
F2∈P (P′)2

v∆(F1,F2) =
∑

j1∈∆[F ](P (P′)1),

j2∈∆[F ](P (P′)2)

v{j1,j2}.

We will apply proposition 3.3.25 to γP for P ≤ A in order to show that

ind(γP) ·

 i∑
j=1

vγj

+
∑

P′∈PP(γ)

ind(γP′) ·

 ∑
F1∈P (P′)1,
F2∈P (P′)2

v∆(F1,F2)


is an element of W(γ,≤), which is the linear space spanned by the curves of fine combinatorial
type (γ,≤) in which the loop is closed. The prerequisites of proposition 3.3.25 are fulfilled because
the flags at the loop of γ fulfill only one relation in addition to the balancing condition at vertices
in the loop of γ and because, due to P ≤ A, the flags at the loop of γP fulfill only one relation
modulo V (γP)<0 in addition to balancing at the vertices in the loop of γP . So let P ≤ A.

vγj is not only a representative of the normal vector u(γj ,≤j)/(γ,≤) but also of the normal vector
uσ(γjP)/σ(γP), where we use the notation of 3.3.18.

For an example of the following constructions, see figure 16. For each P ∈ P, γP has a corre-
sponding flag at the loop, which we denote by FP ∈ FS0(γP ). It holds ∆[F ](P ) = ∆[F ](FP ) for all
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F2F1 F3 F4

F5F6

γ

F1 F2

FP

FP3
FP4

FP5FP6

γP

F1 F2 F3

γP′

F1

FP

F2

FP3

(γP)Q(P,P′)

Figure 16. We denote the combinatorial type of the curve on the left by γ. Fi,
i ∈ [6] are the flags at the loop of γ. We set

P = {{F1, F2}, {Fi}|i = 3, . . . , 6},
P = {F1, F2} and Pi = {Fi}, i ∈ [6]. The partition

P ′ = {{F1, F2, F3}, {Fi}|i = 4, 5, 6}
is coarser than P. It holds Q(P,P ′) = {{FP , FP3}, {FPi}|i = 4, 5, 6}.

P ∈ P. A partition P ′ ∈ PP(γ) that is coarser than P induces a partition Q(P,P ′) of the set of
flags {FP |P ∈ P} at the loop of γP , via

Q(P,P ′) = {{FP |P ⊂ P ′}}P ′∈P′ .

It holds Q(P,P ′1) 6= Q(P,P ′2) for different partitions P ′1,P ′2 ∈ PP(γ) and

PP0(γP) = {Q(P,P ′)|P ′ ∈ PP(γ)},

where PP0(γP) is the notation from proposition 3.3.22, which we recall here:

P0(γP) is the finest partition of the flags at the loop of γP and it holds P0(γP) = Q(P,P). Then
PP0(γP) is the set of partitions Q ∈ P0(γP) of the flags of the loop of γP which are finer than
the one given by the vertices in the loop of γP and which fulfill #I(Q,Q(P,P)) = #Q + 1 and
#I(Q,Q(P,A)) = #Q+ 1.

Moreover, for P ′ ∈ PP , it is true that

ind(γP′) = ind((γP)Q(P,P′)).

It hence follows with proposition 3.3.25 that

ind(γP) ·

 i∑
j=1

vγj

+
∑

P′∈PP(γ)

ind(γP′) ·

 ∑
j1∈∆[F ](P (P′)1),

j2∈∆[F ](P (P′)2)

v{j1,j2}



= ind(γP) ·

 i∑
j=1

vγj

+
∑

P′∈PP(γ)

ind((γP)Q(P,P′)) ·

 ∑
j1∈∆[F ](FP (P′)1

),

j2∈∆[F ](FP (P′)2
)

v{j1,j2}



= ind(γP) ·

 i∑
j=1

vγj

+
∑

P′∈PP0(γP )

ind((γP)P′) ·

 ∑
j1∈∆[F ](F (P′)1),

j2∈∆[F ](F (P′)2)

v{j1,j2}


is an element of W(σ(γP)), where γP is the specialization of γP in which precisely the edges outside
the loop are contracted, where σ(γP) is the set of curves of combinatorial type γP for which the
loop is closed and where W(σ(γP)) is the smallest linear space containing σ(γ).
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Since it holds σ(γ) = σ(γP) for all P ∈ P0(γ) (where γ is the specialization of γ in which precisely
the edges outside the loop are contracted), we conclude∑

j∈[i]

# Aut(γj) · ω(γj) · vγj +
∑

W∈W(γ)

# Aut(γW) · ω(γW) ·

( ∑
W∈W

v∆[F ](W )

)

∈ W(σ(γ)) +

〈 ∑
[G]∈FS0(γ)

v∆[F ]([G])

〉
⊂W(γ,≤),

where W(γ,≤) is the smallest linear space that contains all curves of fine combinatorial type (γ,≤)
which fulfill that the loop is closed. �

Proof of theorem 3.3.8. Combine theorem 3.2.10 and propositions 3.3.13 and 3.3.12. �

Definition 3.3.36 (Evaluation maps)
If xi is a leaf of (C, h) ∈ M1,I(∆,Rm) labeled by i ∈ I, it is contracted by h and mapped to a
point. Hence, the map

evi :M1,I(∆,Rm) → Rm

(C, h) 7→ h(xi)

is well-defined. It is moreover affine linear on every polyhedron inM1,I(∆,Rm) and it follows from
proposition 4.8 in [GKM09] and the previous theorem that the restriction of evi toM1,I(∆,Rm)reg

is an open tropical morphism.
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3.4. Counting well-spaced elliptic curves in Rm

Throughout this section we assume that m ∈ N is a natural number with m ≥ 2. We fix a degree
j : ∆ → Rm of elliptic curves in Rm and fan varieties Li in Rm that can be cut out by rational
functions and that fulfill

n∑
i=1

codimLi = #∆ + n+m− dim〈∆〉 = dimM1,n(∆,Rm).

Set L := {L1, . . . , Ln}. Then the intersection product∏
i∈[n]

ev∗i (ai + Li) · M1,n(∆,Rm)reg

is well-defined and zero-dimensional for all (a1, . . . , an) ∈ (Rm)n, where ai +Li denotes the trans-
lation of Li by ai, see definition 1.2.30 and theorem 3.3.8.

The aim of this section is to prove that the degree of∏
i∈[n]

ev∗i (ai + Li) · M1,n(∆,Rm)reg

does not depend on (a1, . . . , am) ∈ Rm as long as a1 +L1, . . . , an+Ln is in general position, which
is defined below. The approach is the similar to e.g. [GM07a] and [KM09].

We set

ev :=
∏
i∈[n]

evi :M1,n(∆,Rm)→ (Rm)n

to be the total evaluation map. Denote by Lin(Li) the lineality space of Li and by Li/Lin(Li) the
fan variety in Rm/Lin(Li) in which we mod out Lin(Li) from the support of Li.

∏
i∈[n] Rm/Lin(Li)

parametrizes the set of incidence conditions (ai + Li)i∈[n] via

([a1], . . . , [an]) 7→ (ai + Li)i∈[n],

where (ai + Li) does not depend on the choice of ai ∈ [ai]. Let q : (Rm)n →
∏
i∈[n] Rm/Lin(Li)

be the quotient map.

We will study a parameter space of I-marked well-spaced elliptic curves of degree ∆ in Rm to-
gether with incidence conditions ai + Li, i ∈ [n] which they fulfill. Consider M1,n(∆,Rm) ×∏
i∈[n] Rm/Lin(Li)×

∏
i∈[n] Li/Lin(Li). The subcomplex with support

{((C, h), [a], [b])|q ◦ ev(C, h) = [a] + [b]} = {((C, h), q ◦ ev(C, h)− [b], [b])}

contains the set of triples ((C, h), [a], [b]) such that evi(C, h) ∈ supp(ai + Li) and such that there
exist c ∈

∏
i∈[n] Lin(Li) with ev(C, h) = a + b + c. It is a pure-dimensional polyhedral complex

that can be identified with

X :=M1,n(∆,Rm)×
∏
i∈[n]

Li/Lin(Li)

and that has dimension m·n−
∑
i∈[n] dim(Lin(Li)) (due to

∑
i∈[n] codim(Li) = dimM1,n(∆,Rm)),

which is also the dimension of

Y :=
∏
i∈[n]

Rm/Lin(Li).

Define

ev′ : X → Y

((C, h), [b]) 7→ q(ev(C, h))− [b],

which is continuous and affine linear on each polyhedron.
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We will define dense open subsets G,G1 ⊂ Y , where G1 is also connected. An element [a] ∈ Y
which is contained in G will be called in general position, and we will show, as mentioned above,
that the degree of ∏

i∈[n]

ev∗i (ai + Li) · M1,I(∆,Rm)reg

does not depend on (a1, . . . , an) ∈ (Rm)n as long as ([a1], . . . , [an]) ∈ G ⊂ Y .

Definition 3.4.1 (General position, G, G1)
We say that (ai + Li)i∈[n] is in general position if ([a1], . . . , [an]) ∈ Y is an element of

G := Y \
⋃

ev′

M1(α,≤)×
∏
i∈[n]

Li/Lin(Li)


where the union is taken over all fine combinatorial types (α,≤) of positive codimension. Remember

that M1(α,≤) is the set of curves whose fine combinatorial type is a specialization of (α,≤).
Moreover, set

G1 := Y \
⋃

ev′

M1(α,≤)×
∏
i∈[n]

σi


where the union is taken over all fine combinatorial types (α,≤) and polyhedra σi ∈ pol(Li/Lin(Li))
such that

• (α,≤) has codimension at least two and σ is a facet,
• (α,≤) has codimension one, ev |M1(α,≤) is not injective and σ is a facet or
• (α,≤) has codimension one and σ has codimension one.

Since dimX = dimY , it holds that G is dense in Y and that G1 is dense and connected in Y .

Definition 3.4.2 (N∆,L)
Define the map

N∆,L : G → N
([ai])i∈[n] 7→ deg

(∏
i∈[n] ev∗i (ai + Li) · M1,n(∆,Rm)reg

)
.

We state the theorem which we are going to prove in this section.

Theorem 3.4.3
The map N∆,L is constant, i.e. the degree of the intersection product

deg

∏
i∈[n]

ev∗i (ai + Li) · M1,n(∆,Rm)reg


does not depend on (a1, . . . , an) ∈ (Rm)n as long as (a1, . . . , an) ∈ q−1(G), which is dense in (Rm)n.

Remark 3.4.4 (Enumerative relevance of the map N∆,L)
As in the case of rational curves, it follows from lemma 2.1.5, that there exists a dense open subset
D ⊂ (Rm)n such that for all (a1, . . . , an) ∈ D the degree of the intersection product∏

i∈[n]

ev∗i (ai + Li) · M1,n(∆,Rm)reg

is equal to the number of well-spaced elliptic n-marked curves of degree ∆, counted with the
intersection-theoretic multiplicity, that fulfill evi(C, h) ∈ (ai + Li) for all i ∈ [n].

Since G is dense in Y and since G1 is dense and connected in Y , N∆,L is constant if and only if all
a ∈ G1 have a neighborhood U(a) ⊂ Y such that N∆,L|U(a)∩G is constant. ev′ is continuous and
the sets U(a) can be chosen such that

a) each connected component W1, . . . ,Wl of (ev′)−1(U(a)) contains exactly one connected
component of (ev′)−1{a}
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b) Wi ∩Wj 6= ∅ for i, j ∈ [l] with i 6= j and
c) Wj ⊂

⋃
p∈(ev′)−1{a} U(p),

where U(p) are polyhedral neighborhoods of Y at p. Denote the tropical subvariety ofM1,n(∆,Rm)
corresponding to Wj ⊂ M1,n(∆,Rm) ×

∏
i∈[n] Li/Lin(Li) by Mj . Then N∆,L is constant if and

only if

NWj
a : U(a) ∩ G → N

b 7→ deg

∏
i∈[n]

ev∗i (bi + Li) ·Mj


is constant for all a ∈ G1 and for all j ∈ [l].

Fix a = ([a1], . . . , [an]) ∈ G1. According to the definition of G1, Wj fulfills one of the following
properties, where

π1 : X →M1,n(∆,Rm) and π2 : X →
∏
i∈[n]

Li/Lin(Li)

are the projections on the first and second factor, respectively:

(A) (ev′)−1{a} ∩Wj is at least one-dimensional.
(B) #

(
(ev′)−1{a} ∩Wj

)
= 1, we denote the unique element by ((C, h), x) ∈ X and it holds

(i) (C, h) is contained in M1,n(∆,Rm)reg.
(ii) (C, h) has codimension one and precisely two edges in the loop that have the same

weight, and x is contained in a facet of
∏
i∈[n] Li/Lin(Li).

(iii) (C, h) has codimension one and is non-regular, and x is contained in a facet of∏
i∈[n] Li/Lin(Li).

Proposition 3.4.5

For all a ∈ G1, the map N
Wj
a is constant if we are in case (A), in the first case of (B) or in the

second case of (B).

Proof. In case (A), property b) of Wj means that Wj is contained in a polyhedral neighbor-
hood of (ev′)−1{a} ∩Wj , which implies that (ev′)−1{b} ∩Wj is at least one-dimensional for all

b ∈ U(a) ∩ G. Hence, ev′ is injective nowhere on Wj and N
Wj
a is the constant zero function.

In the first case of (B), it holds supp(Mj) ⊂M1,n(∆,Rm)reg, which is an abstract tropical variety.
(bi + Li)i∈[n] ∈ U(a) is rationally equivalent to (ai + Li)i∈[n], and if U(a) is small enough,∏

i∈[n]

ev∗i (bi + Li) ·Mj and
∏
i∈[n]

ev∗i (ai + Li) ·Mj

are hence also rationally equivalent, see lemma 1.2.37. Their degree is therefore equal and N
Wj
a is

constant.

Let us deal with the second case of (B) and let F be a flag in the loop of C. Denote the combinatorial
type of (C, h) by (α,≤) and consider the abstract tropical variety

Zj := U(α[F ],≤[F ]) ∩ j
[F ]
α,≤(Mj),

equipped with the weights of U(α[F ],≤[F ]), whose support contains all curves whose combinatorial
type specializes to (α[F ],≤[F ]), which fulfill that the loop is closed and which correspond to curves
in Mj , see also definition 3.3.5. Remember that a facet of U(α[F ],≤[F ]) containing curves of
combinatorial type β[F ] is equipped with weight

# Aut(β) · ω(β).

# Aut(β) is two if there is only one edge in the loop of β, and # Aut(β) is one if there is more
than one edge in the loop of β. Proposition 3.3.13 states that U(α[F ],≤[F ]) is balanced at the
polyhedron containing curves of fine combinatorial type (α[F ],≤[F ]). Hence, also Zj is balanced.
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If U(a) is small enough, ∏
i∈[n]

ev∗i (bi + Li) · Zj and
∏
i∈[n]

ev∗i (ai + Li) · Zj

are hence rationally equivalent for all ([b1], . . . , [bn]) ∈ U(a), and their degrees coincide.

If (α,≤) ≤ (β,≤β) is a maximal fine combinatorial type in M1,n(∆,Rm), there exist precisely

2

# Aut(β)

fine combinatorial types in Zj that correspond to (β,≤β), see the figure above for an example.

E1

E2

E1

E2

Figure 17. Assume ω(E1) = ω(E2). If we cut one of the edges E1 and E2 in
the curve on the left for constructing a rational curve, the resulting combinatorial
types are the same. However, if we cut one of the edges E1 and E2 in the curve
on the right, the resulting combinatorial types differ.

Since the weights on a facet of Zj containing curves of fine combinatorial type (β[F ],≤[F ]) are chosen
to be # Aut(β) times the corresponding weight in M1,n(∆,Rm), it follows for all ([b1], . . . , [bn]) ∈
U(a) that

NWj
a ([b1], . . . , [bn]) =

1

2
deg

∏
i∈[n]

ev∗i (ai + Li) · Zj


and the map N

Wj
a is constant. �

The only remaining case is the third case of (B). We will deal with this case in the rest of this
section:

So let a ∈ G1, let U(a) be a neighborhood and let W be a connected component of (ev′)−1{U(a)}
such that #

[
(ev′)−1{a} ∩W

]
= 1, say ((C, h), x) ∈ (ev′)−1{a} ∩W , and

a) (C, h) has codimension one and is non-regular and
b) x is contained in a facet of

∏
i∈[n] Li/Lin(Li).

We assume moreover that for all i ∈ [n] the support of Li is an affine linear subspace of Rm. (This
is no restriction because the element x of the support of

∏
i∈[n] Li/Lin(Li) is contained in a facet

and because intersection products are calculated locally.) Furthermore, we assume without loss
of generality m ≥ 3 because non-regular curves in

∏
i∈[n] ev∗i Li · M1,n(∆,R2) have codimension

greater than one.

We denote the fine combinatorial type of (C, h) by (α,≤).

3.4.1. Invariance in a special case. In this subsection, we prove in a special case that the
map NW

a is constant under the assumptions of the third case of (B). The subsequent subsection
deals with the general case, and the proof that NW

a is constant in the general case is a corollary
of the result 3.4.7 of this section.
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x1

E1

E3

E4

E2

x2

p

Figure 18. The flags Fi are given by (p,Ei), where p is the unique vertex of
genus one. The marked points x1 and x2 are adjacent to the leaves that have
direction v(F1) and v(F2), respectively.

Definition 3.4.6
Let (D, g) ∈M1,n(∆,Rm). We call (D, g) a star curve if there exist affine linear maps fi : [0,∞)→
Rm, i ∈ [#∆] such that fi(0) = fj(0) for all i, j ∈ [#∆] and

g(D) =
⋃

i∈[#∆]

fi[0,∞).

Moreover, we demand of star curves that for all i ∈ [#∆] there exists at most one marked point
xj with j ∈ [n] such that g(xj) ∈ fj [0,∞). This means that there is at most one marked point on
each of the rays of g(D).

Proposition 3.4.7
Assume that we are in the third case of (B) and that

a) the number of marked points is n = 2,
b) the unique element (C, h) of π1((ev′)−1{a} ∩W ) is a star curve,
c) #∆ = m+ 1 and 〈j(∆)〉 = Rm,
d) both L1 and L2 are spanned by elements of j(∆).

Then the map NW
a is constant.

We assume in this subsection that the assumptions of the proposition above are valid. Let p ∈
supp(C) be the unique vertex of genus one and let {F1, . . . , Fm+1} ∈ FS0(α) be the set of flags at
the loop of α. For i ∈ [m+ 1] let

yi = ω(Ei) · v(Fi)

be the weighted direction vector of the flag Fi = (p,Ei) at the loop of α. Assume that the marked
point xi is adjacent to the leaf of (C, h) that has direction yi, i ∈ {1, 2}, see the figure below for
an example of the notation.

Since the dimension of M1,2(∆,Rm) is m + 3, it holds moreover dim(L1) + dim(L2) = m − 3. If
Lin(L1) ∩ Lin(L2) 6= {0} or if one of the weighted direction vectors y1 and y2 is an element of L1

or L2, the map q ◦ ev :M1,2(∆,Rm)→ Rm/Lin(L1)×Rm/Lin(L2) is not injective and NW
a is the

constant zero function. So we may assume (by reordering) that

L1 ⊕ L2 = 〈y5, . . . , ym+1〉.

If m = 3, this condition means that both L1 and L2 are points in R3.

Notation 3.4.8 (FD, P(a1), β(a1), ind(P), z(i, j, a1), z(a1))
Define

FD := Zm ∩ {
m+1∑
i=2

λi · yi | 0 ≤ λi < 1},
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which is a fundamental domain of the lattice spanned by y2, . . . , ym+1. An element

a1 =

m+1∑
i=1

λi · yi ∈ FD

with λ1 = 0 defines an ordered partition O(a1) = (P1, . . . , Pr) of the set of flags FS0(α) at the
loop of α and thus a resolution β(a1) of α, which has only additional edges in the loop, see also
construction 3.2.17, lemma 3.2.15 and figure 19:

Set P1 := {Fi|λi = 0, i ∈ [m+ 1]} ⊂ FS0(α) and let r := #{λi|i ∈ [m]} be the number of different
coefficients that appear in the linear combination a1 =

∑m
i=1 λi · yi. Note that F1 ∈ P1. For all

i1, i2 ∈ {2, . . . ,m + 1} it holds that there exists j1, j2 ∈ {2, . . . , r} with j1 < j2 and Fi1 ∈ Pj1 ,
Fi2 ∈ Pj2 if and only if λi1 > λi2 > 0. This ordered partition defines a combinatorial type β(a1)
which has only additional edges in the loop compared to α, and the order of the flags F1, . . . , Fm+1

in the loop of β(a1) is reflected by O(a1). Moreover, a1 is the weighted direction vector of a flag in
the loop of β(a1) adjacent to the flag F1 if we run around the loop of β(a1) as specified by O(a1).

For all resolutions β of α, there exists at least one a1 ∈ FD such that β = β(a1). Since α is the
combinatorial type of a star curve, all curves of combinatorial type α and β(a1) are well-spaced.
We denote the fine combinatorial type corresponding to a1 ∈ FD which is a resolution of (α,≤) by
(β(a1),≤a1).

For a1 ∈ FD, denote the unordered partition of the set of flags FS0(α) at the loop of α corre-
sponding to O(a1) by

P(a1) ∈ P0(α),

where P0(α) is the set of partitions of the flags at the loop of α. If P ∈ P0(α) and P ∈ P, we put

yP =
∑
i∈P

yi and ind(P) = ind(yP |P ∈ P).

x1

x7 x2

x5 x6

x3

x4

E1

E3

E2

E7

x1

x6

x3

x5

x4

x2x7

p1 p3

p2

p7

Figure 19. The combinatorial type on the right is β(a1) where a1 is the weighted
direction vector of the flag (p1, E1). The ordered partition of the flags at the
loop of the combinatorial type α on the left which induces β(a1) is O(a1) =
({F1, F6}, {F3, F5}, {F2, F4}, {F7}) where Fi = (p, xi) for i ∈ [7].

For i1, i2 ∈ [m+ 1] with i1 < i2 and for a1 ∈ FD we set

Z(i1, i2, a1) := |det(y1, . . . , yi1−1, yi1+1, . . . , yi2−1, yi2+1, . . . , ym+1, a1)|
and

Z := |det(y1, . . . , ym)|.
It holds Z = |det(y1, . . . , yi−1, yi+1, . . . , ym+1)| for all k ∈ [m+ 1] because

∑m+1
j=1 yj = 0.

Define for i1, i2 ∈ [m+ 1] and i1 6= i2 and for a1 ∈ FD

z(i1, i2, a1) := Z(i1, i2, a1) · (Z − Z(i1, i2, a1))

and

z(a1) := z(1, 3, a1) + z(2, 4, a1)− z(1, 4, a1)− z(2, 3, a1).
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z(i1, i2, a1) is (up to a constant multiple) a product of volumes in the parallelotope spanned by

y2, . . . , ym+1 (in which the direction vector y1 = −
∑m+1
i=2 yi of the flag F1 is a diagonal), see the

figure below.

y2

y4

y3

Figure 20. Example of z(i1, i2, a1). In this case in R3 it holds i1 = 1, i2 = 3
and a1 is the point in the middle of the cube where the two pyramids meet. The
geometric interpretation of z(i1, i2, a1) is four times the product of the volumes of
the two gray pyramids.

We will show the following statements, which are sufficient to prove proposition 3.4.7, see the proof
below:

a) For all a1 ∈ FD there exists a matrix M(a1) and for all b ∈ (Rm)2 such that q(b) ∈ G is in
general position, there exists s(b) ∈ {−1, 1} such that the following holds: There exists a
curve of fine combinatorial type (β(a1),≤a1) in the support of

K(b) =
∏
i∈[2]

ev∗(bi + Li) · M1,2(∆,Rm)

if and only if
s(b) · det(M(a1)) > 0.

Therefore, the sign of det(M(a1)) determines whether a curve of combinatorial type β(a1)
appears in K(b).

b) The weight of a curve (D, g) ∈ supp(K(b)) of fine combinatorial type (β(a1),≤a1
) is given

by
ω(β(a1)) · ind(P(a1))

ind(β(a1)) · ind(P0) · ind(y5, . . . , ym+1)
· | det(M(a1))|,

where P0 = {{Fi}|i ∈ [m+ 1]} is finest partition of the flags at the loop of α.
c) For all maximal fine combinatorial types (α,≤) ≤ (β,≤β), there exist precisely 2

# Aut(β)

elements a1 ∈ FD such that

(β,≤β) = (β(a1),≤a1
).

In this case, set det(M(β)) := det(M(a1)).
d) For all a1 ∈ FD, it is true that det(M(a1)) = 1

2z(a1).
e) It holds ∑

a1∈FD

# Aut(β(a1)) · ω(β(a1)) · ind(P(a1))

ind(β(a1)) · ind(P0)
· z(a1) = 0.

Proof of proposition 3.4.7 using the statements from above. Let (α,≤) ≤ (β,≤β)
be a maximal fine combinatorial type. Then there exists at least one a1 ∈ FD which fulfills

(β,≤β) = (β(a1),≤a1
),

see lemma 3.2.15. For b ∈ (Rm)2, there exists a curve of fine combinatorial type (β(a1),≤a1
) in

the support of

K(b) =
∏
i∈[2]

ev∗(bi + Li) · M1,2(∆,Rm)
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if and only if s(b) · det(M(a1)) > 0 (see a) above). Hence, for a1 ∈ FD the sign of det(M(a1))
determines whether a curve of fine combinatorial type (β(a1),≤a1) appears in the support of K(b),
and the restriction of NW

a to

U(a)+ = {q(b) ∈ U(a)|s(b) > 0} and U(a)− = {q(b) ∈ U(a)|s(b) < 0}

is constant, where q : (Rm)2 → Rm/Lin(L1)× Rm/Lin(L2) is the projection.

For all ([b1], [b2]) ∈ U(a), the weight of a curve of combinatorial type β in K(b1, b2) is given by

ω(β) · ind(Pβ)

ind(β) · ind(P0) · ind(y5, . . . , ym+1)
· | det(M(β))|,

where Pβ ∈ P0(α) is the partition of the set of flags FS0(α) at the loop of α given by the vertices
in the loop of β (see b) above).

Assume that b1, b2 ∈ U(a) ∩ G such that s(b1) > 0 and s(b2) < 0. Since for all maximal fine
combinatorial types (α,≤) ≤ (β,≤β) there exist precisely 2

# Aut(β) elements a1 ∈ FD such that

(β,≤β) = (β(a1),≤a1) (see c) above), it follows from d) and e) that

NW
a (b1) − NW

a (b2)

=
∑

(α,≤)<(β,≤β),

det(M(β))>0

ω(β) · ind(Pβ)

ind(β) · ind(P0) · ind(y5, . . . , ym+1)
· | det(M(β))|

−
∑

(α,≤)<(β,≤β),

det(M(β))<0)

ω(β) · ind(Pβ)

ind(β) · ind(P0) · ind(y5, . . . , ym+1)
· | det(M(β))|

=
∑

(α,≤)<(β,≤β)

ω(β) · ind(Pβ)

ind(β) · ind(P0) · ind(y5, . . . , ym+1)
· det(M(β))

=
1

ind(y5, . . . , ym+1)
·
∑
a1∈FD

# Aut(β(a1))

2
· ω(β(a1)) · ind(P(a1))

ind(β(a1)) · ind(P0)
· det(M(a1))

=
1

4 · ind(y5, . . . , ym+1)
·
∑
a1∈FD

# Aut(β(a1)) · ω(β(a1)) · ind(P(a1))

ind(β(a1)) · ind(P0)
· z(a1)

= 0.

It follows that NW
a is constant. �

In the rest of this section, we prove the statements in the list above and we start with part b).

Lemma 3.4.9
The weight of a curve of combinatorial type β(a1) in

K(b) =
∏
i∈[2]

ev∗(bi + Li) · M1,2(∆,Rm)

is given by
ω(β(a1)) · ind(P(a1))

ind(β(a1)) · ind(P0) · ind(y5, . . . , ym+1)
· | det(M(a1))|,

where the matrix M(a1) is defined below.

Construction 3.4.10 (M(a1), ak, ck)
For a1 ∈ FD the matrix M(a1) is given as

M(a1) =

(
y1 y2 Y5 a1 c3 c4 C5

a1 a2 a3 a4 A5

)
where Y5 =

(
y5 . . . ym+1

)
, C5 =

(
c5 . . . cm+1

)
, A5 =

(
a5 . . . am+1

)
and ck, ak are defined

in the following:
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Let O(a1) = (P1, . . . , Pl(a1)) be the ordered partition of the flags at the loop of α that defines
(β(a1),≤a1

), see notation 3.4.8. For i ∈ [m+ 1], we denote by ja1
(i) the index of the element

Pja1
(i) ∈ P(a1)

in the ordered partition O(a1) = (P1, . . . , Pl(a1)) which contains the flag Fi, i.e. it holds ja1
(i) =

k ∈ [l(a1)] if and only if Fi ∈ Pk. Remember that it always holds F1 ∈ P1 and hence ja1
(1) = 1.

For r ∈ [#P(a1)], denote the vertex of β(a1) that is adjacent to the flags contained in Pr ∈ P(a1)
by pma1 (r) if ma1(r) ∈ [m+ 1] is the lowest index of a flag contained in Pr, i.e.

ma1(r) = min{j|Fj ∈ Pr}.

Denote the edge in the loop of β(a1) that lies behind the vertex pma1 (r) when we run around the

loop according to the ordered partition O(a1) by Ema1
(r). For an example of the notation see

figure 19 on the right.

For k ∈ [m+ 1] define ak as the weighted direction vector of the flag (pk, Ek) in the loop of β(a1)
if an edge with this index exists, otherwise set ak to be minus the weighted direction vector −yk
of the flag Fk ∈ FS0(α) at the loop of α, i.e.:

ak :=

{
ω(Ek) · v(pk, Ek), ∃ j ∈ [l(a1)] : minPj = k

−yk, else.

For k ∈ [m+1] define ck as the weighted direction vector of the flag ([pk], [Ek]) in the loop of β(a1)
if an edge with this index exists and if the flag Fk appears in front of F2 when we run around the
loop as specified by the ordered partition O(a1). Otherwise, we set ck to be zero, i.e.:

ck :=

{
ak, ∃ ja1

(2) > ja1
(k) ∈ [l(a1)] : minPj = k

0, else

If the weight of a curve of combinatorial type β(a1) in K(b) is non-zero, it always holds a1 = c1,
c2 = 0 (because in this case the flags F1 and F2 are adjacent to different vertices p1, p2 in the loop
of β(a1)) and

ak = ω(Ek) · v(pk, Ek) = a1 −
∑
i∈[l]:

1<ja1 (i)≤jai (k)

yi

if Ek is an edge in the loop of β(a1), i.e. if there exists l ∈ [l(a1)] with minPl = k.

Example 3.4.11
For an example of the matrix M(a1) we consider the curve in figure 19. Let vk ∈ Rm be the
weighted direction vector ω(Ek) · v(pk, Ek) if Ek is an edge in the loop of β(a1). Then it holds

M(a1) =

(
y1 y2 y5 y6 y7 c1 0 c3 0 0 0 0
0 0 0 0 0 a1 a2 a3 a4 a5 a6 a7

)
=

(
y1 y2 y5 y6 y7 v1 0 v3 0 0 0 0
0 0 0 0 0 v1 v2 v3 −y4 −y5 −y6 v7

)

Proof of 3.4.9. Let ([b1], [b2]) ∈ U(a) and

(D, g) ∈ supp

∏
i∈[2]

ev∗i (bi + Li) · M1,2(∆,Rm)reg


of fine combinatorial type (β(a1),≤a1

). Choose a complement V (β(a1))c0 of V (β(a1))0 in Rm
(where V (β(a1))0 is the linear space spanned by the direction vectors of all flags in and at the
loop of β(a1)) and let q′ : Rm → Rm/V (β(a1))c0 be the quotient map. Let F = (p2, E2) be
the flag in the loop of D such that p2 is adjacent to the leaves in the element P ∈ P(a1) which
contains F2. We assume that the direction vector v(F ) of the flag F is non-zero. (Otherwise the
weight of a curve of combinatorial type β(a1) in K(b) would be zero.) Define Y (α[F ],≤[F ]) as the
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subvariety of M0,[2]∪{A,B}(∆[F ],≤[F ]), which contains all well-spaced curves whose combinatorial
type specializes to (α[F ],≤[F ]), and set

ev0 := (q◦ev)×(q′ ◦ (evA− evB))×(lp−lq) : Y (α[F ],≤[F ])→
∏
i∈[2]

Rm/Lin(Li)×Rm/V (β(a1))c0×R,

where we use the notation from 3.3.14.

It follows from lemmata 3.3.21, 3.3.23 and 1.2.9 and from theorem 3.3.8 that the weight of (D, g)

in
∏
i∈[2] ev∗i (bi + Li) · M1,2(∆,Rm)reg is given by ω(β(a1))

2·ind(β(a1)) times the weight of (D[F ], g[F ]) in∏
i∈[2]

ev∗i (bi + Li) · (evA− evB)∗V (β(a1))c0 · (lp − lq)∗{0} · Y (α[F ],≤[F ]),

which is ind(ev0 |M0(β(a1)[F ])), whereM0(β(a1)[F ]) is the set of curves of combinatorial type β(a1)[F ].

In order to determine this index as the determinant of a matrix, we choose the standard coordinates
on Zm and the edge lengths as lattice coordinates onM0,[2]∪{A,B}(∆[F ],Rm). Remember that the
marked points x1 and x2 are adjacent to the leaves of α whose weighted direction vector is y1 and
y2, respectively, and that ak is the weighted direction vector of the flag (pk, Ek) in the loop of
β(a1) if such a flag exists. Then it holds

ind(ev0 |M0(β(a1)[F ])) =
ind(P(a1))

ind(P0) · ind(y5, . . . , ym+1)
· | det(M ′(a1))|

and

M ′(a1) =

y1 y2 Y5 a1 c3 c4 C5

a1 a2 a2 a3 a4 A5

1 −1

 .

The entries 1 and −1 stand for the condition that lp = lq. The factor ind(P(a1))
ind(P0) appears because

of the entries ak = −yk /∈ V (β(a1))<0 in the case that there does not exist Pi ∈ P(a1) with
min{j|Fj ∈ Pi} = k, i.e. in the case that there is no edge in the loop of β(a1) labeled by Ek. It
follows that the weight of (D, g) in K(b) is

ω(β(a1) · ind(P(a1))

ind(β(a1)) · ind(P0) · ind(y5, . . . , ym+1)
· | det(M(a1))|.

�

Remark 3.4.12
Note that det(M(a1)) = 0 if there exists P ∈ P(a1) and pairwise different flags Fi1 , Fi2 , Fi3 ∈
{F1, F2, F3, F4} that are adjacent to the same vertex in the loop of β(a1): This property either
means that the flags F1 and F2 are adjacent to the same vertex p1 or that the direction vectors
of flags on the path from x1 to x2 together with the generators y5, . . . , ym+1 of L1 + L2 (which
appear in the first row of the matrix M(a1)) do not span Rm.

We proceed with part a) from the list above.

Lemma 3.4.13
For b = (b1, b2) ∈ (Rm)2 and for a1 ∈ FD, we denote by M(a1, b) the matrix that arises from
M(a1) by replacing the m-th column by (b2 − b1, 0) ∈ (Rm)2, i.e.

M(a1, b) =

(
y1 y2 Y5 b2 − b1 c3 c4 C5

0 a2 a3 a4 A5

)
.

If ([b1], [b2]) ∈ G, there exists s(b) ∈ {−1, 1} such that the sign of det(M(a1, b)) is s(b) for all
a1 ∈ FD. Moreover, there exists a curve of combinatorial type β(a1) in the support of

K(b) =
∏
i∈[2]

ev∗(bi + Li) · M1,2(∆,Rm)

if and only if
s(b) · det(M(a1)) > 0.
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Proof. Let O(a1) = (P1, . . . , Pl(a1)) be the ordered partition of the flags at the loop of α
induced by a1 ∈ FD. In order to determine whether there exists a curve of combinatorial type

β(a1) in supp
(∏

i∈[2] ev∗(bi + Li) · M1,n(∆,Rm)
)

, we have to solve the system of linear equations

M(a1) · v(a1, b) =

(
b2 − b1

0

)
,

where the entry v(a1, b)m−1+k stands for the length of the edge Ek with weighted direction vector
ak if such an edge exists, i.e. if there exists j ∈ [l(a1)] with minPj = k. Using Cramer’s rule,
v(a1, b)m, which is the length of the edge E1, can be calculated as

v(a1, b)m =
1

det(M(a1))
· det(M(a1, b)).

If and only if v(a1, b)m > 0, i.e. the edge length of E1 is greater than zero, the lengths of all edges
in the loop of β(a1) are greater than zero and there exists a curve of combinatorial type β(a1) in
K(b). (This is true because the direction vectors of flags at the loop of β(a1) fulfill no relation in
V (β(a1))0/V (β(a1))<0 in addition to balancing at the vertices in the loop of β(a1).)

For every edge Ek of β(a1) it holds

ak = a1 −
∑

i∈[m+1]:
1<ja1

(i)≤ja1
(k)

yi,

where ja1(i) ∈ [l(a1)] is defined such that Fi ∈ Pja1 (i), see construction 3.4.10. (We subtract all

weighted direction vectors yi of flags Fi in the loop of β(a1) that appear after the flag F1 and in
front of the flag F2 when we run around the loop of β(a1) according to the ordered partition O(a1).
Assume that F2 ∈ Pl(a1). Then we conclude

det(M(a1), b) = det

(
y1 y2 Y5 b2 − b1

a2 · · · am+1

)
= det

(
y1 y2 Y5 b2 − b1

a1 − y2 −y3 · · · −ym+1

)
.

Since there exists λi ∈ [0, 1), i ∈ {2, . . . ,m+ 2}, with a1 =
∑m+1
i=2 λi · yi, it follows that the sign of

det(M(a1, b)) is equal to the sign s(b) of the determinant of

M(b) :=

(
y1 y2 Y5 b2 − b1

−y2 −y3 · · · −ym+1

)
and does not depend on a1 ∈ FD. If det(M(b)) is zero, ([b1], [b2]) ∈ U(a) is not in general position.

If F2 is an element of an arbitrary Pr ∈ P(a1), r ∈ [l(a1)], and not of Pl(a1) ∈ P(a1), we get the
same result with the same argument but more technical effort. �

Next, we deal with part c) of the list above.

Lemma 3.4.14
Let (α,≤) ≤ (β,≤β) be a maximal fine combinatorial type. Then there exist precisely 2

# Aut(β)

elements a1 ∈ FD such that
(β,≤β) = (β(a1),≤a1

).

Proof. Let p1 ∈ V (β) be the vertex that is adjacent to the leaf with direction y1 and let
E1, E2 ∈ E(β) be the edges in the loop that are adjacent to p (where possibly E1 = E2). The
vectors a1

1 := ω(E1) · v(p,E1), a2
1 := ω(E2) · v(p,E2) (see the figure below for an illustration) are

the only elements of FD that fulfill

(β,≤β) = (β(a1
1),≤a1

1
) = (β(a2

1),≤a2
1
),

where possibly a1
1 = a2

1, see lemma 3.2.15. Since (α,≤) has codimension one and is non-regular,
a1

1 = a2
1 is true if and only if the loop of β contains only one edge, i.e. # Aut(β) = 2. Otherwise,

it holds # Aut(β) = 1. �
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y1 y2

E1 E2

y3 y4

p1

Figure 21. Illustration of the nomenclature used in the lemma above. It holds
ω(E1) · v(p,E1) = a1

1, E2 · v(p,E2) = a2
1 and P1 = {1, 2}.

Here is the proof of part d) from the list above.

Proposition 3.4.15
Let a1 ∈ FD. Then it holds det(M(a1)) = 1

2z(a1).

Proof. Let a1 ∈ FD and O(a1) = (P1, . . . , Pl(a1)) be the ordered partition that determines
the order of the leaves in the loop, in particular F1 ∈ P1. Remember that the direction vector of
an edge Ek in the loop of β(a1) is given by

ak = a1 −
∑
i∈[m]:

1<ja1 (i)≤ja1 (k)

yi

and that ja1(i) = k ∈ [l(a1)] means Fi ∈ Pk.

Assume that 1 < ja1
(3) < ja1

(4) ≤ ja1
(2), i.e. in β(a1) the flags F1, F3 and F4 are adjacent to

different vertices and if we run around the loop of β(a1) according to the ordered partition O(a1)
starting at the flag F1, we first pass the flag F3, then F4 and then F2 (where F2 and F4 might be
adjacent to the same vertex). We get (a2 is replaced by a1 in the last term because there exist

i1, . . . , ik ∈ [m+ 1] \ {3, 4} such that a2 = a1 +
∑k
j=1 yij ):

det(M(a1))

= det

(
y1 y2 Y5 a1 c3 c4 C5

a1 a2 a3 a4 A5

)
= det

(
y1 y2 Y5 a1 −y3 −y4 −Y5

a1 a2 −y3 −y4 −Y5

)
= det

(
y1 y2 Y5 −a2

a1 a2 −y3 −y4 −Y5

)
= det

(
y1 y2 Y5 −a2

a1 −y3 −y4 −Y5

)
= (−1)

2m · det

(
y1 y2 Y5 a2

y3 y4 Y5 a1

)
= det

(
y1 y2 Y5 a1

y3 y4 Y5 a1

)
.

There exist λi ∈ [0, 1) with a1 =
∑m+1
i=2 λi · yi. Due to 1 = ja1

(1) < ja1
(3) < ja1

(4) ≤ ja1
(2), it

holds λ3 > λ4 ≥ λ2. It follows Z(2, 4, a1) = |det(y1, y3, Y5, a1)| and

det(y1, y3, Y5, a1) = det(y1, y3, Y5, λ2y2 + λ4y4) = det(y1, y3, Y5, (λ2 − λ4) · y2).

Moreover, it holds

det(y1, y3, Y5, a1 + y2) = det(y1, y3, Y5, y2)− det(y1, y3, Y5, (λ4 − λ2) · y2)

(with 1 > λ4 − λ2 ≥ 0) and hence

(Z − Z(2, 4, a1)) = |det(y1, y3, Y5, a1 + y2)|.
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We conclude

z(2, 4, a1) = Z(2, 4, a1) · (Z − Z(2, 4, a1)) = − det

(
y1 y3 Y5 a1

y1 y3 Y5 a1 + y2

)
.

With similar considerations for z(1, 3, a1), z(2, 3, a1) and z(1, 4, a1) we get

z(a1)

= z(2, 4, a1) + z(1, 3, a1)− z(2, 3, a1)− z(1, 4, a1)

= − det

(
y1 y3 Y5 a1

y1 y3 Y5 a1 + y2

)
− det

(
y2 y4 Y5 a1

y2 y4 Y5 a1 − y3

)
+ det

(
y1 y4 Y5 a1

y1 y4 Y5 a1 − y3

)
+ det

(
y2 y3 Y5 a1

y2 y3 Y5 a1 − y4

)
.

With y1 +y3 +
∑m+1
i=5 yi = −y2−y4 and y1 +y4 +

∑m+1
i=5 yi = −y2−y3 and by splitting up the first

two determinants in the expression above into four summands each and the last two determinants
into three summands each we get:

z(a1)

= z(2, 4, a1) + z(1, 3, a1)− z(2, 3, a1)− z(1, 4, a1)

= − det

(
y1 y3 Y5 a1

y1 y3 Y5 a1 + y2

)
− det

(
y2 y4 Y5 a1

y2 y4 Y5 a1 − y3

)
+ det

(
y1 y4 Y5 a1

y1 y4 Y5 a1 − y3

)
+ det

(
y2 y3 Y5 a1

y2 y3 Y5 a1 − y4

)
= − det

(
−y4 y3 Y5 a1

y1 −y2 Y5 a1 + y2

)
− det

(
−y4 y3 Y5 a1

y1 −y4 Y5 a1 + y2

)
− det

(
−y2 y3 Y5 a1

y1 −y2 Y5 a1 + y2

)
− det

(
−y2 y3 Y5 a1

y1 −y4 Y5 a1 + y2

)
− det

(
y2 −y1 Y5 a1

−y3 y4 Y5 a1 − y3

)
− det

(
y2 −y1 Y5 a1

−y1 y4 Y5 a1 − y3

)
− det

(
y2 −y3 Y5 a1

−y3 y4 Y5 a1 − y3

)
− det

(
y2 −y3 Y5 a1

−y1 y4 Y5 a1 − y3

)
+ det

(
y1 −y2 Y5 a1

y1 y4 Y5 a1 − y3

)
+ det

(
−y2 −y3 Y5 a1

y1 y4 Y5 a1 − y3

)
+ det

(
−y4 −y3 Y5 a1

y1 y4 Y5 a1 − y3

)
+ det

(
y2 y3 Y5 a1

−y4 y3 Y5 a1 − y4

)
+ det

(
y2 y3 Y5 a1

−y1 −y4 Y5 a1 + y2

)
+ det

(
y2 y3 Y5 a1

−y1 −y2 Y5 a1 + y2

)
.

In the term above with fourteen determinants all summands - except those two determinants in
which the pair y1 and y2 and the pair y3 and y4 appears - have a partner with the opposite sign
and cancel out. It follows

z(a1) = 2 det

(
y1 y2 Y5 a1

y3 y4 Y5 a1

)
= 2 · det(M(a1)).

Assume now that 1 < ja1
(3) ≤ ja1

(2) ≤ ja1
(4) and ja1

(3) < ja1
(4). It follows (a2 is replaced by

a1 − y3 and a1 in the last two determinants because there exist i1, . . . , ik ∈ [m+ 1] \ {1, 2, 3} such

that a2 = a1 + y1 +
∑k
j=1 yik)

det(M(a1)

= det

(
y1 y2 Y5 a1 a3 C5

a1 a2 a3 a4 A5

)
= det

(
y1 −y3 Y5 a1 −y3

a1 a2 −y3 −y4 −Y5

)
+ det

(
y1 −y4 Y5 a1 −y3 −y4

a1 a2 −y3 −y4 −Y5

)
= det

(
y1 −y3 Y5 a1

a1 a2 y1 −y4 −Y5

)
+ det

(
y1 −y3 Y5 a1

a1 a2 y2 −y4 −Y5

)
+ det

(
y1 −y4 Y5 −a2 Y5

a1 a2 −y3 y1 −Y5

)
+ det

(
y1 −y4 Y5 −a2 Y5

a1 a2 −y3 y2 −Y5

)
= (−1)

2m
det

(
y1 y3 Y5 a1

y2 y4 Y5 a1 − y3

)
− (−1)

2m
det

(
y1 y4 Y5 a2

y2 y3 Y5 a1

)
= det

(
y1 y3 Y5 a1

y2 y4 Y5 a1 − y3

)
− det

(
y1 y4 Y5 a1

y2 y3 Y5 a1

)
.
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For a1 =
∑m+1
i=2 λiyi, it holds λ3 ≥ λ2 ≥ λ4 and λ3 > λ4 because of 1 < ja1

(3) ≤ ja1
(2) ≤ ja1

(4)
and ja1(3) < ja1(4). With the same considerations as in the first case, we conclude:

z(a1)

= z(1, 3, a1) + z(2, 4, a1)− z(1, 4, a1)− z(2, 4, a1)

= − det

(
y1 y3 Y5 a1

y1 y3 Y5 a1 + y4

)
− det

(
y2 y4 Y5 a1

y2 y4 Y5 a1 − y3

)
+ det

(
y1 y4 Y5 a1

y1 y4 Y5 a1 − y3

)
+ det

(
y2 y3 Y5 a1

y2 y3 Y5 a1 + y1

)
.

By splitting up each of the four determinants above into three summands it follows:

z(a1)

= − det

(
y1 y3 Y5 a1

−y4 −y2 Y5 a1 − y3

)
− det

(
y1 y3 Y5 a1

−y3 −y2 Y5 a1 − y3

)
− det

(
y1 y3 Y5 a1

y1 −y4 Y5 a1 + y4

)
− det

(
−y3 −y1 Y5 a1

y2 y4 Y5 a1 − y3

)
− det

(
−y3 −y2 Y5 a1

y2 y4 Y5 a1 − y3

)
− det

(
−y1 y4 Y5 a1

y2 y4 Y5 a1 − y3

)
+ det

(
y1 y4 Y5 a1

−y3 −y2 Y5 a1 − y3

)
+ det

(
y1 y4 Y5 a1

−y3 −y1 Y5 a1 − y3

)
+ det

(
y1 y4 Y5 a1

−y2 y4 Y5 a1 − y3

)
+ det

(
y2 y3 Y5 a1

−y4 −y1 Y5 a1 + y1

)
+ det

(
y2 y3 Y5 a1

−y4 −y2 Y5 a1 − y3

)
+ det

(
y2 y3 Y5 a1

−y1 y3 Y5 a1 + y1

)
.

The determinants in which the pair y1 and y3 and the pair y2 and y3 appear in the same row and
the determinants in which the pair y1 and y3 and the pair y1 and y4 appear in the same row have
a partner with the opposite sign and they cancel out. It follows

z(a1)

= 2 det

(
y1 x3 Y5 a1

y2 y4 Y5 a1 − y3

)
− 2 · det

(
y1 y4 Y5 a1

y2 y3 Y5 a1

)
= 2 det(M(a1)).

The remaining cases can be proven accordingly. �

Finally, we deal with part e) from the list above.

Proposition 3.4.16
It holds ∑

a1∈FD

# Aut(β(a1)) · ω(β(a1)) · ind(P(a1))

ind(β(a1)) · ind(P0)
· z(a1) = 0,

where P0 = {{Fi}|i ∈ [m+ 1]} is the finest partition of the flags at the loop of α.

For the proof, we need some lemmata:

Lemma 3.4.17
Let m ∈ N and c1, . . . , cm ∈ N and Q :=

∏
i∈[m] ci. Then it holds:

1

6
(Q3 −Q) =

m∑
k=1

k−1∏
j=1

cj

( ck∑
i=0

(ck − i) · i

)
·

 m∏
j=k+1

cj

3

Proof. We proof the claim by induction on m ∈ N. The case m = 1 can be seen using the
formulae for the summation of the first c1 integers and the first c1 squares. Assume that the claim
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is true for some m ∈ N. It holds

1

6
(Q3 −Q) =

1

6

(
Q

c1

)3

((c1)3 − c1) +
c1
6

((
Q

c1

)3

− Q

c1

)

=

(
c1∑
i=0

(c1 − i) · i

)(
Q

c1

)3

+ c1 ·
m∑
k=2

k−1∏
j=2

cj

( ck∑
i=0

(ck − i) · i

) m∏
j=k+1

cj

3

=

m∑
k=1

k−1∏
j=1

cj

( ck∑
i=0

(ck − i) · i

)
·

 m∏
j=k+1

cj

3

,

where the second equation follows by the induction hypothesis. �

Notation 3.4.18 (P(i,j), P(S)k, FD(P))
Let P ∈ P0(α) and i1, i2 ∈ [m+ 1]. We set

P(i1,i2) :=

(
P \ {P |Fi1 ∈ P or Fi2 ∈ P}

)
∪

{ ⋃
P∈P:

(Fi1
∈P or Fi2

∈P )

P

}
,

i.e. we unite the elements of P containing the flags Fi1 and Fi2 .

For an m-tuple S = ((i11, i
1
2), . . . , (im1 , i

m
2 )) with ilk ∈ [m + 1] (k ∈ {1, 2} and l ∈ [m]) and for

j ∈ [m], we define the partition P(S)j ∈ P0(α) recursively via P(S)0 = P0 and

P(S)j = (P(S)j−1)Sj ,

i.e. we unite subsets of P0 as prescribed by the first j entries of S. If P ∈ P0(α), we define

FD(P) := {a1 ∈ FD |P ≤ P(a1)},

i.e. a1 ∈ FD is an element of FD(P) if the partition P(a1) of the flags at the loop of α given by
the vertices in the loop of β(a1) is coarser than the partition P. It holds P1 ≤ P2 if and only if
FD(P2) ⊂ FD(P1). FD(P) is the intersection of

FD = {
m+1∑
i=2

λiyi} ∩ Z

with the vector space spanned by the vectors

yP =
∑
Fi∈P

yi

for P ∈ P. Note that

〈yP |P ∈ P〉 ⊂ 〈yP |P ∈ P ′〉
for all P,P ′ ∈ P0(α) which fulfill P ′ ≤ P.

Remark 3.4.19
Note that (PT1)T2 = (PT2)T1 for all P ∈ P0(α) and all pairs T1, T2 ∈ [m+ 1]2.

Lemma 3.4.20
Let S = ((i11, i

1
2), . . . , (im1 , i

m
2 )) be an m-tuple as above that fulfills that P(S)m = {FS0(α)} is the

coarsest partition of the flags at the loop of α and that ij1 < ij2 for all j = 1, . . . ,m. Then it holds

m∑
j=1

∑
a1∈FD(P(S)j)

z(ij1, i
j
2, a1) · ind(P(S)j)

ind(P0)
=

1

6
(ind(P0)3 − ind(P0)).

Proof. The key to the proof is the previous lemma. For all j ∈ [m] let bj ∈ Rm be a vector
that complements a lattice basis of

〈yi | i ∈ [m+ 1] \ {(Sj)1, (Sj)2}〉 ∩ Zm



108 3. ENUMERATIVE GEOMETRY OF ELLIPTIC TROPICAL CURVES IN RM

to a lattice basis of Zm. Put

cj :=
ind(P(S)j−1)

ind(P(S)j)
,

then it holds ∏
j∈[m]

cj = ind(P0)

because of P(S)m = {FS0(α)} and ind(FS0(α)) = 1 (remember that FS0(α) = {F1, . . . , Fm+1}
and

∑
i∈[m+1] yi = 0). With the previous lemma we conclude the following:

1

6
(ind(P0)3 − ind(P))

=

m∑
j=1

(
j−1∏
k=1

ck

)
·

(
cj∑
i=1

(cj − i) · i

)
·

 m∏
k=j+1

ck

3

·
∏j−1
k=1 ck∏j−1
k=1 ck

It holds for all j ∈ [m] and i ∈ N that

Z(ij1, i
j
2, i · bj)

= |det(y1, . . . , yij1−1, yij1+1, . . . , yij2−1, yij2+1, . . . , ym+1, i · bj)|

=

(
j−1∏
k=1

ck

)
· i ·

 m∏
k=j+1

ck

 .

and

Z = |det(y1, . . . , yij1−1, yij1+1, . . . , yij2−1, yij2+1, . . . , ym+1, cj · bj)|

We conclude:

1

6
(ind(P0)3 − ind(P))

=

m∑
j=1

cj∑
i=1

Z(ij1, i
j
2, i · bj) · (Z − Z(ij1, i

j
2, i · bj)) ·

∏m
i=j+1 ci∏j−1
i=1 ci

=

m∑
j=1

cj∑
i=1

Z(ij1, i
j
2, i · bj) · (Z − Z(ij1, i

j
2, i · bj)) · ind(P(S)j+1) ·

(
ind(P(S)0)

ind(P(S)j)

)−1

=

m∑
j=1

∑
a1∈FD(Pj)

Z(ij1, i
j
2, a1) · (Z − Z(ij1, i

j
2, a1)) · ind(P(S)j)

ind(P0)

�

Construction 3.4.21 (R0(α), T)
Let P ∈ P0(α) be a partition of the set of flags at the loop of α such that F1, F2, F3, F4 are elements
of pairwise different elements P1, P2, P3, P4 ∈ P. Denote the set of such partitions P by R0(α)
and for P ∈ R0(α) set

P[4] = (P \ {P | ∃i ∈ [4] : i ∈ P}) ∪ {
⋃
P∈P:

(∃i∈[4]:i∈P )

P},

i.e. we unite the sets containing 1, 2, 3 and 4, respectively. Define

T1 = (1, 3), T2 = (1, 4), T3 = (2, 4), T4 = (2, 3) and T = {T1, T2, T3, T4}.

It holds z(a1) =
∑4
i=1(−1)i+1z(Ti, a1).
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Lemma 3.4.22
Let P ∈ R0(α), i.e. the flags F1, . . . , F4 are contained in four different elements of P. Then:

0 =
∑

a1∈FD(P)

z(a1) · ind(P)

ind(P0)

−
∑
i∈[4]

∑
a1∈FD(PTi )

z(a1) · ind(PTi)
ind(P0)

+

2∑
i=1

∑
a1∈FD((PTi )Ti+2 )

z(a1) · ind((PTi)Ti+2)

ind(P0)

Proof. Fix P ∈ R0(α) and an m-tuple

SP = ((iP,11 , iP,12 ), . . . , (iP,m1 , iP,m2 ))

that fulfills that there exists d(P) ∈ [m] with

a) P((SP)d(P)) = P, i.e. after uniting d(P) times elements of P0 as prescribed by SP we get
P, and

b) P((SP)d(P)+3) = P[4], i.e. after uniting (d(P) + 3) times elements of P0 as prescribed by
SP we get P[4] and

c) P((SP)m) = {FS0(α)}.

Moreover, for any different i, j ∈ [4] fix c(j, i) = c(i, j) ∈ [4] \ {i, j} and define the m-tuple of index
pairs

Si,jP =
(

(iP,11 , iP,12 ), . . . , (i
P,d(P)
1 , i

P,d(P)
2 ), Ti, Tj , Tc(i,j), (i

P,d(P)+4
1 , i

P,d(P)+4
2 ), . . . , (iP,m1 , iP,m2 )

)
,

which fulfills P((Si,jP )m) = {FS0(α)}. With the last lemma, we conclude

Gi,jP :=

m∑
k=1

∑
a1∈FD(P (Si,jP )k−1)

z((Si,jP )k, a1) ·
ind(P(Si,jP )k)

ind(P0)
=

1

6
(ind(P0)3 − ind(P0)).

There are twelve of these expression Gi,jP in the following sum, six with a positive and six with a
negative sign, hence

0 =
∑
i∈[4]

(−1)i+1
∑
j∈[4],
j 6=i

(−1)i+j · Gi,jP .

The summands of Gi,jP differ for different i, j ∈ [4] only for k ∈ {d(P) + 1, d(P) + 2, d(P) + 3}
and the remaining summands cancel out in the sum above which defines Gi,jP . Moreover, for
all i ∈ [4] and a1 ∈ FD((P0)Ti) (i.e. a1 is an element of the hyperplane spanned by {yj |j 6=
(Ti)1, j 6= (Ti)2}), it holds z(Ti, a1) = 0. Therefore, it follows with remark 3.4.19 and due to
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z(a1) =
∑4
i=1(−1)i+1z(Ti, a1) that

0 =
∑
i∈[4]

(−1)i+1
∑
j∈[4],
j 6=i

(−1)i+j · Gi,jP

=
∑

a1∈FD(P)

4∑
i=1

(−1)iz(Ti, a1) · ind(P)

ind(P0)

+

4∑
i=1

∑
a1∈FD(PTi )

∑
j∈[4]\{i}

(−1)j+1z(Tj , a1) · ind(PTi)
ind(P0)

+

4∑
i=1

∑
j∈[4]\{i}

∑
a1∈FD((PTi )Tj )

(−1)j+1z(Tc(i,j), a1) · ind((PTi)Tj )
ind(P0)

=
∑

a1∈FD(P)

(−z(a1)) · ind(P)

ind(P0)

+

4∑
i=1

∑
a1∈FD(PTi )

4∑
j=1

(−1)j+1z(Tj , a1) · ind(PTi)
ind(P0)

+

2∑
i=1

∑
a1∈FD((PTi )Ti+2 )

2 · (−1)i+1z(Tc(i,i+2), a1) · ind((PTi)Ti+2)

ind(P0)

The last equation is true because c(i, j) = c(j, i). Moreover, it holds z(Tj , a1) = z(Tj+2, a1) for
a1 ∈ FD((PTi)Ti+2) if i, j ∈ [2] with i 6= j and therefore

2 · (−1)i+1z(Tc(i,i+2), a1) =

4∑
k=1

(−1)kz(Tk, a1) = −z(a1).

�

Corollary 3.4.23
Assume that m = 3. Then the map NW

a is constant under the assumptions of proposition 3.4.7.

Proof. It remains to check that∑
a1∈FD

# Aut(β(a1)) · ω(β(a1)) · ind(P(a1))

ind(β(a1)) · ind(P0)
· z(a1) = 0.

Let a1 ∈ FD and note that it holds #FS0(α) = m + 1 = 4. With remark 3.4.12 it follows that
det(M(a1)) = 1

2z(a1) = 0, if there exists P ∈ P(a1) which contains more than three flags at the
loop of α, i.e.

#P = #(P ∩ {F1, F2, F3, F4}) ≥ 3.

We conclude that it holds #P ≤ 2 if P ∈ P(a1) and z(a1) 6= 0. If z(a1) 6= 0 it hence follows

n(P(a1)) :=

 ∏
P∈P(a1)

(−1)#P−1(#P − 1)!

 ∈ {−1,+1}.

More precisely, it holds

• n(P(a1)) = 1 if P(a1) = P0 is the finest partition of FS0(α),
• n(P(a1)) = −1 if there exists i1, i2, i3, i4 ∈ [4] with P(a1) = {{Fi1 , Fi2}, {Fi3}, {Fi4}} and
• n(P(a1)) = 1 if there exist i1, i2, i3, i4 ∈ [4] with P(a1) = {{Fi1 , Fi2}, {Fi3 , Fi4}}.

Moreover, it holds z(a1) = 0 if there exists P ∈ P(a1) with {F1, F2} ⊂ P or {F3, F4} ⊂ P , i.e. if
the flags F1 and F2 or the flags F3 and F4 sit at the same vertex in the loop of β(a1).
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Due to

ω(β(a1)) =
1

Aut(β(a1))
·
∑

P≤P(a1)

n(P) · ind(β(a1)P)

we conclude with the previous lemma that

∑
a1∈FD

# Aut(β(a1)) · ω(β(a1)) · ind(P(a1))

ind(β(a1)) · ind(P0)
· z(a1)

=
∑
a1∈FD

∑
P≤P(a1)

n(P)
ind(β(a1)P) · ind(P(a1))

ind(β(a1)) · ind(P0)
· z(a1)

=
∑
a1∈FD

∑
P≤P(a1)

n(P) · ind(P)

ind(P0)
· z(a1)

=
∑
P≤P0

∑
a1∈FD(P)

n(P) · ind(P)

ind(P0)
· z(a1)

=
∑

a1∈FD(P0)

z(a1) · ind(P)

ind(P0)

−
∑
i∈[4]

∑
a1∈FD(PTi0 )

z(a1) · ind(PTi)
ind(P0)

+

2∑
i=1

∑
a1∈FD((PTi0 )Ti+2 )

z(a1) · ind((PTi)Ti+2)

ind(P0)

= 0

�

Proof of proposition 3.4.16. For any P ∈ P0(α), it holds a1 ∈ FD(P) if and only if
P ≤ P(a1). Therefore, it follows from the previous lemma that

0 =
∑

P∈R0(α)

∏
P∈P

n(P )·

[ ∑
a1∈FD(P)

·z(a1) · ind(P)

ind(P0)

−
∑
i∈[4]

∑
a1∈FD(PTi )

·z(a1) · ind(PTi)
ind(P0)

+

2∑
i=1

∑
a1∈FD((PTi )Ti+2 )

·z(a1) · ind((PTi)Ti+2)

ind(P0)

]

=
∑

a1∈FD

∑
P∈R0(α):
P≤P(a1)

(∏
P∈P

n(P )

)
· z(a1) · ind(P)

ind(P0)

−
4∑
i=1

∑
a1∈FD:

(∃R∈R0(α):a1∈FD(RTi ))

∑
P∈R0(α):

PTi≤P(a1)

(∏
P∈P

n(P )

)
· z(a1) · ind(PTi)

ind(P0)

+
2∑
i=1

∑
a1∈FD:

(∃R∈R0(α):a1∈FD((RTi )Ti+2))

∑
P∈R0(α):

(PTi )Ti+2≤P(a1)

(∏
P∈P

n(P )

)
· z(a1) · ind((PTi)Ti+2)

ind(P0)
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Let T = (i1, i2) ∈ T, R ∈ R0(α) and set A := RT . Let us calculate∑
P∈R0(α),

PT=A

∏
P∈P

n(P ).

Assume that the element of A containing i1 and i2 has cardinality k + 2 ∈ N and let 0 ≤ l ≤ k.
Then there are

(
k
l

)
elements P ∈ R0(α) with the following properties:

• The element of P containing i1 has l + 1 elements.
• The element of P containing i2 has k − l + 1 elements.
• PT = A.

Therefore it holds: ∑
P∈R0(α)

PT=A

∏
P∈P

(−1)#P−1(#P − 1)!

=

l∑
k=0

(
k

l

) ∏
P∈A,
i1,i2 /∈P

(−1)#P−1(#P − 1)!

 · l! · (k − l)! · (−1)l+k−l

= (−1)k · (k + 1)!
∏
P∈A,
i1,i2 /∈P

(−1)#P−1(#P − 1)!

= −
∏
P∈A

(−1)#P−1(#P − 1)!

Let now i ∈ {1, 2}, R ∈ R0(α) and set A := (RTi)Ti+2 . We will calculate∑
P∈R0(α)

(PTi )Tj=A

∏
P∈P

n(P ).

Assume that the element of A containing (Ti)1 and (Ti)2 has cardinality k1+2 and that the element
of A containing (Ti+2)1 and (Ti+2)2 has cardinality k2 + 2. Let 0 ≤ l1 ≤ k1 and 0 ≤ l2 ≤ k2. Then

there exist
(
k1

l1

)
·
(
k2

l2

)
elements P ∈ R0(α) with the following properties:

• The element of P containing (Ti)1 has l1 + 1 elements.
• The element of P containing (Ti)2 has k1 − l1 + 1 elements.
• The element of P containing (Ti+2)1 has l2 + 1 elements.
• The element of P containing (Ti+2)2 has k2 − l2 + 1 elements.
• (PTi)Ti+2 = (PTi+2)Ti = A.

It follows: ∑
P∈R0(α)

(PTi )Tj=A

∏
P∈P

(−1)#P−1(#P − 1)!

=

k1∑
l1=0

k2∑
l2=0

(
k1

l1

)
·
(
k2

l2

)
·

 ∏
P∈A,

[4]∩P=∅

(−1)#P−1(#P − 1)!

 · (k1 − l1)! · (k2 − l2)! · (−1)k1+k2

= (k1 + 1)! · (k2 + 1)! ·
∏
P∈A,

[4]∩P=∅

(−1)#P−1(#P − 1)!

=
∏
P∈A

(−1)#P−1(#P − 1)!
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Since it holds det(M(a1)) = 1
2z(a1) = 0 if there exists P ∈ P(a1) containing three of the flags

F1, F2, F3, F4 ∈ FS0(α) (see remark 3.4.12), we conclude:

0 =
∑
a1∈FD

∑
A≤P(a1):A∈R0(α)

(∏
A∈A

n(A)

)
· z(a1) · ind(A)

ind(P0)

+

4∑
i=1

∑
a1∈FD:

(∃R∈R0(α):a1∈FD(RTi ))

∑
A≤P(a1):

(∃P∈R0(α):A=PTi)

(∏
A∈A

n(A)

)
· z(a1) · ind(A)

ind(P0)

+

2∑
i=1

∑
a1∈FD:

(∃R∈R0(α):a1∈FD((RTi )Ti+2))

∑
A≤P(a1):

(∃P∈R0(α):A=(PTi )Ti+2)

(∏
A∈A

n(A)

)
· z(a1) · ind(A)

ind(P0)

=
∑
a1∈FD

∑
P≤P(a1)

(∏
P∈P

n(P )

)
· z(a1) · ind(P)

ind(P0)

=
∑
a1∈FD

∑
P≤P(a1)

(∏
P∈P

n(P )

)
· ind(β(a1)P) · ind(P(a1))

ind(β(a1)) · ind(P0)
· z(a1)

=
∑
a1∈FD

# Aut(β(a1)) · ω(β(a1)) · ind(P(a1))

ind(β(a1)) · ind(P0)
· z(a1)

�

3.4.2. Invariance in the general case. We generalize proposition 3.4.7 and prove the main
theorem 3.4.3 which states that the degree of∏

i∈[n]

ev∗i (ai + Li) · M1,I(∆,Rm)reg

does not depend on (a1, . . . , an) ∈ (Rm)n as long as ([a1], . . . , [an]) ∈ G is in general position.

Proposition 3.4.24
Assume that we are in the third case of (B). Then the map NW

a is constant.

This proposition is proven as a corollary of proposition 3.4.16. Again (C, h) ∈M1,n(∆,Rm) is the
unique element of π1((ev′)−1{a}∩W ) and has fine combinatorial type (α,≤). (C, h) is non-regular
and has a vertex of genus one.

As in the special case treated in the previous subsection, denote the weighted direction vectors
of the flags F1, . . . , Fs ∈ FS0(α) at the loop of α by y1, . . . , ys. Since (α,≤) has codimension
one and is non-regular, it holds that the vectors y1, . . . , ys−1 ∈ Rm are linearly independent and∑s
i=1 yi = 0. It holds dim〈y1, . . . , ys〉 ≥ 3 and hence s ≥ 4 because otherwise a non-regular fine

combinatorial type (α,≤) would have codimension at least two.

Define

FD(y1, . . . , ys) =

{
s∑
i=2

λi · yi|0 ≤ λi < 1 ∀ i = 2, . . . , s

}
∩ Zm

as the intersection of Zm with a fundamental domain of the lattice spanned by y2, . . . , ys. As in
the special case, for all maximal fine combinatorial types (α,≤) ≤ (β,≤β) in M1,I(∆,Rm) there
exist 2

Aut(β(a1) elements a1 ∈ FD(y1, . . . , ys) such that

(β,≤β) = (β(a1),≤a1).

Similar to the special case, the weight of a curve of fine combinatorial type (β(a1),≤a1
) in

K(b) =
∏
i∈[n]

ev∗i (bi + Li) · M1,n(∆,Rm)reg
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is given by ω(β(a1))
2·ind(β(a1)) times the weight of the corresponding curve in∏
i∈[n]

ev∗i (bi + Li) · (evA− evB)∗V (β(a1))c0 · (lp − lq)∗{0} · Y (α[F ],≤[F ]),

where V (β(a1))c0 is a complement of V (β(a1))0, Y (α[F ],≤[F ]) is the variety containing all well-
spaced curves in M0,I∪{A,B}(∆[F ],Rm) whose fine combinatorial type specializes to (α[F ],≤[F ])
and all facets are equipped with weight one. See construction 3.3.4 for the remaining notation.
This weight is given by the index of the map ev0 given by

(q ◦ ev)× (q′ ◦ (evA− evB))× (lp − lq) : Y (α[F ],≤[F ])→
∏
i∈[n]

Rm/Lin(Li)× Rm/V (β(a1))c0 × R

restricted to the polyhedron containing curves of combinatorial type β(a1)[F ], where

q : (Rm)n →
∏
i∈[n]

Rm/Lin(Li) and q′ : Rm → Rm/V (β(a1))c0

are the projections. Similarly to the special case, the weight of a curve of fine combinatorial type
(β(a1),≤a1

) in K(b) is therefore given by

ω(β(a1)) · ind(P(a1))

ind(β(a1)) · ind(P0)
· | det(M(a1))|,

where P(a1) is the partition of the set of flags FS0(α) at the loop of α given by β(a1), where P0

is the finest partition of FS0(α) and where the matrix M(a1) has the following form:

M(a1) =



R′0 R′2 · · · R′q R′1
R1,2

...
R1,r1

R2,1 R1 C2(a1)
...

...
...

R2,r2 R1 C2(a1)
. . .

...
...

Rq,1 R1 Cq(a1)
...

...
...

Rq,rq R1 Cq(a1)
A(a1) B



.

The notation is explained below. The idea of this representation of the matrix M(a1) is that the
submatrices with a capital R stand for the conditions β(a1) outside the loop (in the “rational”
part of β(a1), which does not depend on a1) and that the submatrices Cj(a1) and A(a1) encode
the conditions in the loop of β(a1).

In order to calculate the index of the map ev0 defined above, we choose edge lengths and a root
vertex as coordinates on the polyhedron containing curves of combinatorial type β(a1). Without
loss of generality we assume that all marked points of α lie behind the flags F1, . . . , Fq at the loop
of α, seen from the loop, with 2 ≤ q ≤ s. Since (α,≤) has codimension one in M1,I(∆,Rm)
and since α is non-regular, it follows that there are no marked points in the loop of α (which is
a single point). Otherwise α had codimension at least two. Hence, also the regular resolutions
of α do not have marked points in the loop. If there existed only one flag F1 at the loop behind
which lie marked points, the map ev0 would not be injective on the polyhedron containing curves
of fine combinatorial type (α[F ],≤[F ]) and NW

a would be the constant zero function. For j ∈ [q],
assume that there are rq marked points that lie in α behind the flag Fq ∈ FS0. In particular,
it holds

∑q
j=1 rq = n because we have altogether n marked points on α. Choose as root vertex

a marked point, which we denote by x1, that lies behind the flag F1. We denote the linear
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part of the incidence condition that is fulfilled by the k-th marked point that lies behind Fj by
Lkj ∈ {L1, . . . , Ln}, j ∈ [q] and k ∈ [rj ].

x1

x2

flag behind which lies a marked point

unique vertex of genus one

(bounded) flag behind which lies no marked point

α

Figure 22. Example of a non-regular elliptic combinatorial type α. In a curve
whose fine combinatorial type is a resolution of (α,≤), the length of a flag at the
loop behind which lies no marked point is determined by the partial order ≤ on
the vertices of α given by well-spacedness (at least if the weight of the curve is
non-zero).

By R1,2, . . . , R1,r1 we denote the matrices given by a path from x1 to one of the remaining r1 − 1
marked points that lie behind F1 together with columns that span a lattice basis of L1

1 and of
Lk1 , k = 2, . . . , r1. The columns of these matrices lie in Rm. A column is the zero vector if the
corresponding edge that lies behind F1 does not appear in the path from x1 to the considered other
marked point behind F1, and the number of columns of each of these matrices equals the number
of bounded edges that lie behind the flag F1 plus the sum over the dimensions of the incidence
conditions which lie behind the flag F1.

Let the matrix R1 (with columns in Rm) encodes the path from x1 to the loop of α: The columns
of this matrix are either zero or one of the weighted direction vectors that appear in the path from
x1 to the loop or one of the vectors that span a lattice basis of L1

1 (which is the incidence condition
corresponding to the root vertex x1). The number of columns of R1 coincides with the number of
columns of each of the matrices R1,2, . . . , R1,r1 .

For j = 2, . . . , q and i = 1, . . . , rj , we define Rj,i as the matrices which encode the path from Fj to
the rj marked points of α that lie behind the flag Fj , i.e. the columns of these matrices are either
zero, a weighted direction vector of a flag that lies in the part of α behind Fj or a vector that is
part of a lattice basis of an incidence condition that lies behind Fj . The columns of Rj,i lie in Rm,
and the number of columns of each Rj,i, i ∈ [rj ], equals the number of bounded edges behind Fj
plus the sum over the dimension of the incidence conditions behind Fj .

Up till now, the submatrices encode the incidence conditions. Now we come to the conditions given
by well-spacedness and the total preorder ≤ on the vertices of α.

By R′0, . . . , R
′
q we denote the matrices that stand altogether for the conditions on the edge lengths

of bounded edges in α which are imposed by the total preorder ≤ on the vertices of α. A matrix
R′j has the same number of columns as each of the matrices Rj,i (where j ∈ [q] and i ∈ [rj ]). The
columns of R′0 stand for the bounded edges of α which lie behind one of the flags Fq+1, . . . , Fs at
the loop of α behind which lies no marked point.

Note that up till now the described submatrices of M(a1) only depend on α and not on the
resolution β(a1).

We define the k-th column of the matrix A(a1) ∈ Rm×s as the weighted direction vector ak of the
edge Ek if an edge with this label exists in the loop of β(a1) and we define ak otherwise to be
zero. (Remember that we label a vertex pk in the loop of β(a1) by the minimal index k of a flag
at the loop in {F1, . . . , Fs} = FS0(α) that is adjacent to pk, and that we label the edge in the
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loop of β(a1) that lies behind the vertex pk when we run around the loop according to the ordered
partition O(a1) by Ek.) This notation a1, . . . , as is similar to the special case.

In the spirit of the definition of the submatrix C ∈ Rm×(m+1) of M(a1) in the special case, for
j ∈ [q], we define Cj(a1) ∈ Rm×s as the matrix that encodes the path in the loop of β(a1) from
the flag F1 to the flag Fj , j ∈ [q], i.e. (Cj(a1))k = ak if the path from F1 to Fj passes the edge
Ek (where the direction of this path in the loop of β(a1) is given by the ordered partition O(a1)
of FS0(α)) and otherwise (Cj(a1))k = 0.)

The columns of the matrix B ∈ Rm×(m−s+1) are a lattice basis of a complement of the vector space
spanned by the weighted direction vectors y1, . . . , ys of the flags at the loop of α, i.e. B does not
depend on a1 ∈ FD(y1, . . . , ys).

Remark 3.4.25
Let a1 ∈ FD(y1, . . . , ys). Similarly to the special case we see (using Cramer’s rule in one of the
columns of M(a1) with the matrices Cj(a1) and A(a1)) that the sign of the determinant of M(a1)
determines whether there appears a curve of fine combinatorial type (β(a1),≤a1

) in the intersection
product K(b) =

∏n
i=1 ev∗i (bi + Li)M1,I(∆,Rm).

The key to the proof of proposition 3.4.24 is the following corollary of proposition 3.4.16.

Corollary 3.4.26
Let z1, . . . , zm−1 ∈ Rm and set X = (z1, . . . , zm−1) ∈ Rm×(m−1). Then it holds for all j ∈ {2, . . . , q}
that ∑

a1∈FD(y1,...,ys)

# Aut(β(a1)) · ω(β(a1)) · ind(P(a1))

ind(β(a1)) · ind(P0)
· det

(
X Cj(a1)

A(a1) B

)
= 0,

where Cj(a1), A(a1) and B are the submatrices of M(a1) defined above.

Proof. Let a1 ∈ FD(y1, . . . , ys), j ∈ {2, . . . , q} and consider the matrix

N(X, a1) =

(
X Cj(a1)

A(a1) B

)
∈ R2m×2m.

We first consider a special type of matrix X = (z1, . . . , zm−1) ∈ Rm×(m−1). Assume that there
exists i1, . . . , is−2 ∈ [s] such that zi1 , . . . , zis−2 ∈ {y1, . . . , ys}. Assume moreover that y1, yj ∈
{zi1 , . . . , zis−2

} where j ∈ {2, . . . , q} was fixed above. Let the remaining vectors zk ∈ Rm with
k ∈ [m− 1] and k /∈ {i1, . . . , is−2} be given by the columns of the matrix B.

Remember that it holds by the choice of B that imB⊕〈y1, . . . , ys〉 = Rm and dim〈y1, . . . , ys〉 = s−
1. Since the weighted direction vectors of all flags in the loop of β(a1) are contained in 〈y1, . . . , ys〉,
it follows that all columns of X, A(a1), Cj(a1) and B are contained either in 〈y1, . . . , ys〉 or in
im(B). We project all columns of X, Cj(a1) and A(a1) to 〈y1, . . . , ys〉, choose lattice coordinates
on 〈y1, . . . , ys〉 and get a matrix

N ′(a1) =

(
X ′ C ′j(a1)

A′(a1)

)
∈ R2(s−1)×2(s−1),

where dim〈y1, . . . , ys〉 = s− 1.

Since the columns of B are a lattice basis of a complement of 〈y1, . . . , ys〉, there exists e ∈ {−1, 1}
such that det(N ′(a1)) = e · det(N(X, a1)) for all a1 ∈ FD(y1, . . . , ys). It holds moreover that the
columns in the matrix X ′ stand for s−2 of the vectors y1, . . . , ys including y1 and yj . We conclude
with propositions 3.4.15 and 3.4.16 that∑

a1∈FD(y1,...,ys)

# Aut(β(a1)) · ω(β(a1)) · ind(P(a1))

ind(β(a1)) · ind(P0)
· det(N(X, a1)) = 0.

Let now z1, . . . , zm−1 ∈ Rm be arbitrary. Using the multilinearity of the determinant in the first
m − 1 rows of the matrix N(a1), there exists r ∈ N and matrices X1, . . . , Xr ∈ Rm×(m−1) of
the special type studied above in this proof such that we can express det(N(X, a1)) as a linear
combination of the determinants of N(X1, a1), . . . , N(Xr, a1). This linear combination can be
chosen independently of a1 ∈ FD(y1, . . . , ys), and the claim follows. �
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Corollary 3.4.27
It holds ∑

a1∈FD(y1,...,ys)

# Aut(β(a1)) · ω(β(a1)) · ind(P(a1))

ind(β(a1)) · ind(P0)
· det(M(a1)) = 0,

Proof. Let a1 ∈ FD(y1, . . . , ys). We will show that det(M(a1)) is a linear combination of
determinants of matrices of the form

N(X, a1) =

(
X Cj(a1)

A(a1) B

)
∈ Rm×m

(with X ∈ Rm×(m−1)) that appear in the lemma above. It holds moreover that the coefficients of
this linear combination do not depend on a1 ∈ FD(y1, . . . , ys).

The determinant of M(a1), defined at the beginning of this subsection, is equal to the determinant
of (use row operations)

M ′(a1) =



R′0 R′2 · · · R′q R′1
R1,2

...
R1,r1

R2,1 R1 C2(a1)
R2,2 −R2,1 0 0

...
...

...
R2,r2 −R2,1 0 0

. . .
...

...
Rq,1 R1 Cq(a1)

Rq,2 −Rq,1 0 0
...

...
...

Rq,rq −Rq,1 0 0
A(a1) B(a1)



.

By using Laplace’s formula in all rows of M ′(a1) but those with the matrices C2(a1), . . . , Cq(a1)
and A(a1), we get that det(M ′(a1)) (and hence det(M(a1))) is a linear combination of determinants
of matrices of the form

N ′(a1) =


S2 S C2(a1)

. . .
...

...
Sq S Cq(a1)

A(a1) B

 ∈ Rmq×mq.

The matrix S comes from the submatrix R1 of M ′(a1) by deleting columns and the matrices Sj
come from Rj,1 for j = 2, . . . , q by deleting columns. In particular, this linear combination is
independent of a1 ∈ FD(y1, . . . , ys).

Assume that q > 2 and assume that there exists j ∈ {2, . . . , q} such that the matrix Sj has m
columns, say j = 2, then the determinant of N ′(a1) is equal to a constant multiple (which does
not depend on a1) of the determinant of

N ′′(a1) =


S3 S C3(a1)

. . . S
...

Sq S Cq(a1)
A(a1) B

 ∈ R(m−1)q×(m−1)q.

Hence, we have reduced the number of blocks in the matrix.

If q > 2 and if all submatrices S2, . . . , Sq of N ′(a1) have less than m columns, it follows that the
submatrix S of N ′(a1) has at least one column:
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The matrix (A(a1)|B) has s + (m − s + 1) = m + 1 columns and the matrices S2, . . . , Sq at
most (q − 1)(m− 1) columns altogether (because all matrices S2, . . . , Sq have strictly less than m
columns). Hence, S has at least

qm− (m+ 1)− (q − 1)(m− 1) = q − 2 > 0

columns.

Because S has at least one column, we may use the the multilinearity of the determinant in the
columns of N ′′(a1) with the matrix S and get (by permuting the columns with the submatrix S)
that the determinant of N ′′(a1) is a linear combination of determinants of matrices of the form

N ′′′(a1) =


S′3 C3(a1)

. . .
...

S′q Cq(a1)
A(a1) B

 ∈ R(m−1)q×(m−1)q.

Again this linear combination does not depend on a1 ∈ FD. Now, there exists at least one matrix
S′j which has m columns, and we can reduce the number of blocks as in the case above.

It follows that we can express N ′(a1) (and hence M(a1)) as a linear combination - that can be
chosen independently of a1 ∈ FD(y1, . . . , ys) - of matrices of the form

N(X, a1) =

(
Y2 Y Cj(a1)

A(a1) B

)
=

(
X Cj(a1)

A(a1) B

)
∈ R2m×2m,

where j ∈ {2, . . . , q}.
This means that there exists nj ∈ N and λji ∈ R, Xj

i ∈ Rm×m−1 for j ∈ {2, . . . , q} and i ∈ [nj ]
such that it holds for all a1 ∈ FD(y1, . . . , ys)

det(M(a1)) =

q∑
j=2

nq∑
i=1

λji · det

(
Xj
i Cj(a1)

A(a1) B

)
.

Now the claim follows with the previous corollary. �

Proof of 3.4.24. As in the special case with two marked points treated in the previous
subsection, for all maximal (α,≤) ≤ (β,≤β), there exist 2

Aut(β) elements a1 ∈ FD(y1, . . . , ys) that

fulfill

(β,≤β) = (β(a1),≤a1
).

The weight of a curve of fine combinatorial type (β(a1),≤a1) is given by

ω(β(a1)) · ind(P(a1))

ind(β(a1)) · ind(P0)
· | det(M(a1))|,

and the sign of det(M(a1)) determines whether a curve of fine combinatorial type (β(a1),≤a1)
appears in the intersection product

K(b) =

n∏
i=1

ev∗i (bi + Li)M1,I(∆,Rm).

If (β,≤β) = (β(a1),≤a1
), we set det(M(β)) = det(M(a1)) and P(β) = P(a1).

With the previous corollary it follows that∑
(α,≤)<(β,≤β)

ω(β) · ind(P(β))

ind(β) · ind(P0)
· det(M(β))

=
∑

a1∈FD(y1,...,y2)

Aut(β(a1))

2
· ω(β(a1)) · ind(P(a1))

ind(β(a1)) · ind(P0)
· det(M(a1))

= 0,

and similarly to the proof of proposition 3.4.7 we see the map NW
a is constant. �
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Proof of theorem 3.4.3. In proposition 3.4.5 we have shown that the map NW
a is constant

in case (A) and in the first two cases of (B). Proposition 3.4.24 states that NW
a is constant also in

the third case of (B). Using the argument at the beginning of this section, we conclude that the
map

N∆,L : G → N
([ai])i∈[n] 7→ deg

(∏
i∈[n] ev∗i (ai + Li) · M1,n(∆,Rm)reg

)
is constant, i.e. the degree of the intersection product does not depend on the position of the
translated fans a1 + L1, . . . , an + Ln as long as q(a1, . . . , an) ∈ G is in general position. �





Index of notations

Polyhedral complexes and tropical varieties.

• Let τ be a general polyhedron in a vector space ΛR = Λ ⊗Z R with lattice Λ. Then we
denote by

W(τ)

the smallest linear space in ΛR which contains x− y for all x, y ∈ τ . By τ◦ we denote the
relative interior of τ .

• If X = (X,Y, {φσ}) is a polyhedral complex, we denote its polyhedral structure X by
pol(X ), its support Y by supp(X ) and call the maps φσ polyhedral charts. For σ ∈ pol(X )
we set

W(σ) = W(φσ(σ)) and UX (σ) =
⋃
σ⊂τ

τ◦.

Tropical curves.

• Let C be an I-marked curve where I is an index set labeling the leaves of C. By

V(C),E(C),F(C) and FS(C)

we denote the set of vertices, edges, flags and flag segments of C. Vertices, edges, flags an
flag segments are defined in 1.3.1. For an abstract combinatorial type Γ and a combinatorial
type α, we denote the vertices, edges, flags and flag segments in the same way.

• We define

ω(E)

as the index of the map h ◦ φ−1
E |φE(E), where (C, h) is a parametrized curve in Rm and

E ∈ E(C) an edge of C with polyhedral chart φE : E → R.
• By

v(C,h)(p,E) ∈ Rm and vω(C,h)(p,E) = ω(E) · v(C,h)(p,E)

we denote the direction vector and the weighted direction vector of the flag (p,E) ∈ F(C)
of a parametrized curve (C, h).

The moduli space of rational tropical curves.

• The general polyhedron

M0(α)

is the set of curves in M0,I(∆,Rm) which have combinatorial type α. The set M0(α)
contains all curves whose combinatorial type is equal to or finer than α.

• The linear space

W(α) := W(M0(α))

is the smallest linear space containing M0(α).
• For J ⊂ ∆ ∪ I with #J ≥ 2 and #(∆ ∪ I) \ J ≥ 2, we denote by

vJ ∈M0,I(∆,Rm)

a curve which has only one bounded edge and the leaves with label i ∈ J sit at one vertex
and the leaves with label i ∈ (∆ ∪ I) \ J sit at the other vertex. The position of the root
vertex is chosen arbitrarily.
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Elliptic Curves. Let (C, h) ∈ PI(∆,Rm) be an elliptic curve in Rm of combinatorial type α.

• We denote the set of curves in PI(∆,Rm) which have combinatorial type α by

P(α).

Its closure P(α) contains all curves whose combinatorial type is α or a specialization of α.
• The number

# Aut(α)

is defined as the number of automorphisms of a curve (C, h) of combinatorial type α.
• Let p ∈ supp(C) be a point outside the loop of C. Then we define

dC(p)

as the distance of p to the loop of C, i.e. as the length of the path (which contains no flag
in the loop of C) from p to a vertex vp ∈ CL in the loop of C. If p ∈ supp(C) is a vertex
in the loop of C, we set dC(p) = 0, and if p ∈ supp(C) is a point in the loop which is not
a vertex, we set dC(p) = −1.

• Let d ∈ R. By

Vd(C) = {v ∈ V(C)|d(v) = d}
we denote the set of vertices of C which have distance d to the loop. The set

Pd = {p ∈ supp(C)|d(p) = d}

contains the points in supp(C) which have distance d to the loop. By

FSd(C) = {(p,E) ∈ FS(C)|d(p) = d, d(q) ≥ d ∀ q ∈ E}

we denote the set of flag segments which have distance d to the loop. If d = 0, we define

V0(α),P0(α) and FS0(α)

analogously.
• Let p ∈ supp(C) be a point with d(p) ≥ 0. Then we define

Fp = {(v,E) ∈ FSd(p)|p = v}

as the set of flag segments that lie directly behind p seen from the loop. We define

v(p) =
∑

F∈FSp(C)

vω(F )

as the sum of the weighted direction vectors of flag segments that lie directly behind p seen
from the loop. We define F[p] and v([p]) analogously for [p] ∈ V(α).
• Let d ≥ 0. We define

V (C, h)d and V (C, h)<d

as the vector spaces spanned by the direction vectors of flag segments F ∈ FS(C) whose
distance to the loop is at most d and less than d, respectively. We define V (α)0 and V (α)<0

analogously.
• We define

L(C, h)0 and L(C, h)<0

as the lattices spanned by the weighted direction vectors of flag segments F ∈ FS(C) in
and at the loop of C and in the loop of C, respectively. We define L(α)0 and L(α)<0

analogously.
• The index

ind(α)

is defined as the index ind(L(α)0) of the lattice L(α)0.
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• Let F = (p,E) ∈ Fp(C) be a flag segment of C outside the loop that points away from the
loop. Then we define

∆(F ) ⊂ ∆ ∪ I
as the set of labels of leaves that lie behind F seen from the loop, i.e. the path from p
to the marked point xi with i ∈ ∆(F ) has F as first flag and does not pass the loop. If
W ⊂ FS(C) is a set of flag segments outside the loop of C that point away from the loop,
we define

∆(W ) =
⋃
F∈W

∆(F ).

If p ∈ supp(C) is a point with d(p) ≥ 0 we define

∆(p) =
⋃

F∈FSp

∆(F )

as set of labels of leaves the lie behind p seen from the loop.
• Let (C, h) ∈ PI(∆,Rm) and let H ⊂ Rm be a hyperplane. We define

– the vertices of (C, h) closest to the loop at which a flag runs out of H as

VH(C, h) = {v ∈ supp(C)|V (C, h)<d(v) ⊂ H, ∃(v,E) ∈ Fv : v(v,E) /∈ H},
– the distance

dH(C, h)

of H to the loop of C as the distance of a vertex closest to the loop at which a flag
runs out of H, i.e. if VH(C, h) 6= ∅, we define dH(C, h) := d(v) for an arbitrary vertex
v ∈ VH(C, h), otherwise we set dH(C, h) = 0,

– the flags closest to the loop which run out of H as

FH(C, h) := {(p,E) ∈ F(C)|d(p) = dH(C, h), v(p,E) /∈ H}.

Rational curves corresponding to elliptic curves. To a regular curve (C, h) ∈
PI(∆,Rm) of fine combinatorial type (α,≤) and a flag F ∈ F(C) in the loop of C, we
associate a rational curve

(CF , hF ) ∈M0,I∪{A,B}(∆[F ],Rm)

of fine combinatorial type
(α[F ],≤[F ]),

see 3.3.4 for the constructions.
– We denote by

U(α[F ]) ⊂M0,I∪{A,B}(∆[F ],Rm)

the set of curves whose combinatorial type specializes to α[F ] (or is equal to α[F ]).
– The support of the weighted polyhedral complex

U(α[F ],≤[F ])

contains all curves which correspond to elliptic curves whose fine combinatorial type
specializes to (α,≤). The weight on a facet of U(α[F ],≤[F ]) containing curves of
combinatorial type β[F ] is given by Aut(β) · ω(β).

– The open subvariety
X(α[F ])

ofM0,I∪{A,B}(∆[F ],Rm) contains all curves whose combinatorial type β[F ] specializes
to α[F ] and in the specialization process only edges in and at the loop of β[F ] are
contracted. The weight on each facet is one.

– The specialization of α[F ] in which precisely the bounded edges outside the loop are
contracted is denoted by

α[F ].

– The maps
evA, evB , lp and lq

are defined in 3.3.14.
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Partitions and elliptic curves. Assume that (O1, . . . , Os) is an s-tuple of pairwise disjoint
sets. Then we define

O(O1, . . . , Os)

as the set of ordered partitions (P1, . . . , Pr) of
⋃̇s
i=1Oi that are finer than (O1, . . . , Os), i.e. there

exist i1, . . . , is = r ∈ [r] such that Oj =
⋃̇ij
i=ij−1+1Pi for all j ∈ [r] (where i0 = 0). By

P({O1, . . . , Os})

we denote the set of partitions {P1, . . . , Pr} of
⋃̇s
i=1Oi that are finer than {O1, . . . , Os}.

• Let Γ be an abstract combinatorial type of elliptic curves and let O ∈ O(F[v1], . . . ,F[vs])
be an ordered partition of the flags at the loop of Γ, where (([v1], [E1]), . . . , ([vs], [Es]) is a
path around the loop of Γ if Γ is regular and where s = 1 and [v1] is the unique vertex of
genus one if Γ is non-regular. Then

ΓO

is a resolution of Γ which is constructed in 3.2.17.
• Let (C, h) ∈ PI(∆,Rm) a curve of fine combinatorial type (α,≤) and let P ∈ P({Fv}v∈Pd)

be a partition of the set of flag segments with distance d to the loop of C that is finer than
the one given by the points with distance d to the loop of C. Then P defines resolutions

(CP , hP) and (αP ,≤P)

of (C, h) and (α,≤), see 3.2.23. If (C, h) is regular and F ∈ F(C) a flag in the loop of C
with v(F ) 6= 0, we define ((CF )P , (hF )P) and ((α[F ])P , (≤[F ])P) analogously.

• For shortening notation define

P0(α) = P({F[v]}[v]∈P0(α)).

• The subsets
Pard(C, h) ⊂ P({Fp}p∈Pd(C))

and
Par0(α) ⊂ P({F[v]}[v]∈P0(α))

are defined in 3.2.26.
• Let (Γ, v,≤) be a non-regular fine combinatorial type in M1,I(∆,Rm), let F1, . . . , Fs be

the flags at the loop of α = (Γ, v) with weighted direction vectors y1, . . . , ys. Then an
element a1 ∈ Zm of

FD(y1, . . . , ys) = {
s∑
i=1

λiyi|0 ≤ λi < 1, λ1 = 0} ∩ Zm

defines an ordered partition

O(a1) = (P1, . . . , Pr) ∈ O({FS0(α)})
of the flags at the loop of α as described in 3.4.10. The corresponding unordered partition
is denoted by

P(a1) = {P1, . . . , Pr}.
We denote by

(β(a1),≤a1
)

with β(a1) = (ΓO(a1), v(a1)) the well-spaced resolution of (α,≤) where the abstract combi-
natorial type is given by ΓO(a1), v(a1) is specified by the weighted direction vector a1 ∈ Zm
of the flag in the loop of ΓO(a1) that runs from the vertex adjacent to the flags in P1 ∈ P(a1)
to the vertex adjacent to the flags in P2 ∈ P(a1) and the total preorder ≤a1 on the set
of vertices of ΓO(a1) is induced by the total preorder ≤ on the set of vertices of α. For a

partition P ∈ P0(α) and P ∈ P, we set

yP =
∑

i∈[s]:Fi∈P

yi and ind(P) = ind(yP |P ∈ P).
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Moreover, we set

FD(P) = {a1 ∈ FD(y1, . . . , ys)|P ≤ P(a1)}
and we define

P0(α) = {{F1}, . . . , {Fs}}
as the finest partition of the flags at the loop of α. Assume that s = m + 1 and
〈y1, . . . , ym+1〉 = Rm.

– We set
FD = FD(y1, . . . , ym+1),

and
z(i1, i2, a1), z(a1) and M(a1)

are defined in 3.4.8 and 3.4.10.
– Let i1, i2 ∈ [s] = [m+ 1] and P ∈ P0(α). We define

P(i1,i2) =

(
P \ {P ∈ P : Fi1 ∈ P or Fi2 ∈ P}

)
∪


⋃
P∈P:

Fi1
∈P or Fi2

∈P

P

 ,

i.e. we take the union of elements of P containing the flags Fi1 and Fi2 .
– By

R0(α) ⊂ P0(α)

we denote the set of partitions P ∈ P0(α) such that the flags F1, F2, F3 and F4 are
contained in pairwise different elements of P.

– We set T1 = (1, 3), T2 = (1, 4), T3 = (2, 4), T4 = (2, 3) and

T = {T1, T2, T3, T4}.

Well-spaced elliptic curves of codimension one in M1,I(∆,Rm). Let (α,≤) be a fine
combinatorial type in M1,I(∆,Rm) of codimension one that fulfills

dimV (α)0/V (α)<0 = #FS0(α)−#P0(α)− 1.

Let [F ] ∈ F(α) be a flag in the loop that fulfill v([F ]) 6= 0.

• For shortening notation, we denote the fine combinatorial type (α[F ],≤[F ]) of curves in
M0,I∪{A,B}(∆[F ],Rm) by

(γ,≤).

• For P,P ′ ∈ P0(γ) we define

I(P,P ′) = {P ∩ P ′ 6= ∅|P ∈ P, P ′ ∈ P ′}.
• Due to the assumptions, Par0(γ) contains exactly one partition of the set of flag segments

FS0(γ) that strictly refines the partition {F[v]}[v]∈P0(γ) of FS0(γ) given by the vertices in
the loop of γ. We denote this distinguished partition by

A ∈ Par0(γ).

• We set

W(γ) = {W ∈ P0(γ)|W 6= P0(γ),#(A ∩W ) ≤ 1 ∀ A ∈ A and ∀W ∈ W},
where

P0(γ) = {{[F ]}}[F ]∈FS0(γ)

is the finest partition of the flags at the loop of γ.
• We define

PP0(γ) = {P ∈ P0(γ)|#I(A,P) = #P + 1,#I(P0(γ),P) = #P + 1}.
The set PP0(γ) contains all partitions that arise from P0(γ) by uniting two flags F1, F2 ∈
F[v] that lie directly behind one vertex [v] ∈ V0(γ) in the loop of γ and that are contained
in different elements A1, A2 ∈ A.
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[BM08] Erwan Brugallé and Grigory Mikhalkin. Floor decompositions of tropical curves: The planar case. Pro-

ceedings of 15th Gökova Geometry-Topology Conference, pages 64–90, 2008.
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