Prof. Dr. Ulrich Thiel
Address
Gottlieb-Daimler-Straße
Building 48, Office 416
67663 Kaiserslautern
Mailing Address
Postfach 3049
67653 Kaiserslautern
Contact
Tel.: +49 631 205 2258
Fax: +49 631 205 4427
E-Mail: thiel (at) mathematik.uni-kl.de

Research Interest
- Symplectic algebraic geometry (symplectic singularities, Poisson deformations, symplectic duality, minimal model program; symplectic reflection algebras, rational Cherednik algebras, Calogero–Moser spaces)
- Coxeter groups, Kazhdan–Lusztig theory, Hecke algebras
- Complex reflection groups, cyclotomic Hecke algebras
- Highest weight categories, cellular algebras
- Soergel bimodules
- Tensor categories
- Generic representation theory
- Computer algebra
Publications
- Introduction to Soergel bimodules (with B. Elias, S. Makisumi, and G. Williamson).
In preparation and to appear in Springer RSME (2019). - Calogero–Moser families and cellular characters: computational aspects (with C. Bonnafé).
In preparation (2019). - Cores of graded algebras with triangular decomposition (with G. Bellamy).
Preprint (2017).
- Highest weight theory for finite-dimensional graded algebras with triangular decomposition
Adv. Math. 330 (2018) 361–419. With G. Bellamy. Final, Preprint. - Blocks in flat families of finite-dimensional algebras
Pac. J. Math. 295 (2018), No. 1, 191–240. Final, Preprint. - Hyperplane arrangements associated to symplectic quotient singularities
Phenomenological approach to algebraic geometry, 25–45, Banach Center Publ., 116,
Polish Acad. Sci. Inst. Math., Warsaw, 2018. With G. Bellamy and T. Schedler. Final, Preprint. - Restricted rational Cherednik algebras
EMS Ser. Congr. Rep., Representation theory – current trends and perspectives (2017), 681–745. Final, Preprint. - Cuspidal Calogero–Moser and Lusztig families for Coxeter groups
J. Algebra 462 (2016), 197–252. With G. Bellamy. Final, Preprint. - Decomposition matrices are generically trivial
Int. Math. Res. Not. (2016), no. 7, 2157–2196. Final, Preprint. - CHAMP: A Cherednik Algebra Magma Package
LMS J. Comput. Math. 18 (2015), no. 1, 266–307. Final, Preprint. - A counter-example to Martino’s conjecture about generic Calogero–Moser families
Algebr. Represent. Theory 17 (2014), no. 5, 1323–1348. Final, Preprint.