Technomathematics Group

Dr. Wolfgang Bock

Office: 48-567

Phone: +49 (0)631 205 4492

E-mail: bock(at)



HM Büro

The website for of the office for mathematics for students from other faculties you find here. 



Journal Papers

  1. W.Bock, S. Desmettre, J.L. Silva, Integral Representation of Generalized Grey Brownian Motion, Stochastics, (2019)
  2. W.Bock, Y. Jayathunga, Optimal control of a multi-patch Dengue model under the influence of Wolbachia bacterium, Math. BioSci. Eng.,, (2019)
  3. W.Bock, J.L. Silva, T. Fattler, Analysis of Stochastic Quantization of the Fractional Edwards Measure, Rep. Mat. Phys. Vol. 82, Iss. 2, (2018)
  4. W. Bock, T. Götz, U.P. Liyanage, Parameter estimation of fiber lay-down in nonwoven production: an occupation time approach,  Int J Adv Eng Sci Appl Math. (2018)
  5. W. Bock, Y. Jayathunga, Optimal Control and Basic Reproduction Numbers for a Compartemental Spatial Multipatch Dengue Model, Math. Mod. In Appl. Sci. (2018)
  6. W. Bock, T. Fattler, L. Streit, Stochastic Quantization of the Fractional Edwards Measure, Acta Applicandae Mathematicae, Vol. 151, Iss. 1, (2017)
  7. W. Bock, P. Capraro, The Hamiltonian Path Integral for Potentials of the Albeverio-Høegh-Krohn Class – a White Noise Approach, Reports on Mathematical Physics, Vol. 79, Iss. 1, (2017).
  8. W. Bock, J.L. Silva, H.P. Suryawan, Local Times for Multifractional Brownian Motion in Higher Dimensions: A White Noise Approach. Infinite Dimensional Analysis, Quantum Probability and Related Topics, Vol. 19, Iss. 4, (2016)
  9. W. Bock, J.B. Bornales, C. Cabahug, S. Eleuterio, L.Streit,  Scaling Properties of Weakly Self-Avoiding Fractional Brownian Motion in One Dimension. Journal of Statistical Physics. Vol 161, Iss 5, (2015)
  10. M. Bock, W. Bock, Regular  Transformation Groups based on Fourier-Gauss Transforms, Communications in Stochastic Analysis (2015).
  11. W. Bock, M. Grothaus, The Hamiltonian path integrand for the charged particle in a constant magnetic field as white noise distribution, Infinite Dimensional Analysis, Quantum Probability and Related Topics. Vol. 18 Iss. 2, (2015).
  12. W. Bock, M. J. Oliveira, J.L. da Silva, L. Streit, Polymer measure: Varadhan's renormalization revisited. Reviews in Mathematical Physics. 27, (3), (2015).
  13. W. Bock, Hamiltonian Path Integrals in Momentum Space Representation via White Noise Techniques. Rep. Mat. Phys.. 73, (1), 91-107, (2014).
  14. W. Bock, T. Götz., M. Grothaus, U.P. Liyanage, Parameter Estimation from Occupation Times -A White Noise Approach. Communications in Stochastic Analysis. 4, (8), 489–499, (2014). 
  15. W. Bock, M. Grothaus, S. Jung, The Feynman integrand for the charged particle in a constant magnetic field as White Noise distribution.Communications in Stochastic Analysis. 6, (4), 649-668, (2012). 
  16. W. Bock, M. Grothaus White noise approach to phase space Feynman path integrals. Teor. Imovir. Mat. Stat.. 85, (2012). 

Conference Proceedings

  1. W.Bock, T.Fattler, I. Rodiah, An Agent Based Modeling of Spatially Inhomogeneous Host-Vector Disease Transmission - ECMI Proceedings 2018 (2019)
  2. W. Bock, J.L. da Silva, Wick type SDEs driven by grey Brownian motion,Conference Proceedings AIP, Worldscientific (2017)
  3. W. Bock, T.Fattler, I. Rodiah, O.Tse,An analytic method for agent based modeling of disease spreads, Conference Proceedings AIP, Worldscientific (2017)
  4. W. Bock, T.Fattler, I. Rodiah, O.Tse,Numerical Evaluation of agent based modeling of disease spreads,Conference Proceedings AIP, Worldscientific (2017)


  1. W.Bock, How to Use White Noise Analysis to Make Feynman Integrals Mathematically Rigorous,in Let Us Use White Noise, pp. 67-115, Mai 2017, World Scientific  
  2. W.Bock, Generalized Scaling Operators in White Noise Analysis and Applications to Hamiltonian Path Integrals with Quadratic Actionin Stochastic and Infinite Dimensional Analysis. Birkhäuser - Trends in Mathematics (2015). 
  3. W.Bock, M. Bracke, Schulmathematik – Made in Kaiserslauternin Mathematik im Fraunhofer-Institut. Springer Spektrum, (2014).


Publikationen in Didaktik

  1. W.Bock, M. Bracke, (2018). Modellierung und Simulation von Krankheitsausbreitungen. In Greefrath, G. & Siller, H.-S.: Digitale Werkzeuge, Simulationen und mathematisches Modellieren: Didaktische Hintergründe und Erfahrungen aus der Praxis. Realitätsbezüge im Mathematikunterricht, Spinner Fachmedien Wiesbaden, 2018.
  2. W.Bock, M. Bracke, P. Capraro, P. & J.-M. Lantau. How does a product-based and action-orientated modelling project promote interdisciplinary teaching and learning? Proc. ICTMA-18, Springer (2018)
  3.  W.Bock, J.-M. Lantau. Mathematical modelling of dynamical systems and implementation at school. In Dooley, T. and Gueudet, G. (Eds.), Proceedings of the Tenth Congress of the European Society for Research in Mathematics Education, Dublin (2017) 
  4. W.Bock, M. Bracke, P. Capraro, Product Orientation in Modeling Tasks, Proceedings of CERME 10 (2017)
  5. W.Bock, A. Roth, Der unmögliche Freistoß, Neue Materialien für einen realitätsbezogenen Mathematikunterricht (2016)
  6. W. Bock, M. Bracke, J. Kreckler, Taxonomy of Modelling Tasks. Proceedings of the Ninth Congress of the European Society for Research in Mathematics Education, Prag,  (2015).
  7. W. Bock, M. Bracke, Erfahrungen mit mathematischer Modellierung in der Hochschulausbildung,  Beiträge zum Mathematikunterricht 2015.
  8. W. Bock, M. Bracke, MINT-Projektunterricht in der Sekundarstufe I: Konzepte und Herausforderungen. Beiträge zum Mathematikunterricht 2014. 
  9. W. Bock, M. Bracke, MINT-Projektunterricht in der Sekundarstufe I: Beispiele aus der Unterrichtspraxis. Beiträge zum Mathematikunterricht 2014. 
  10. W. Bock, M. Bracke, Teamcycling-Optimales Teamtraining im Radsport. Neue Materialien für einen realitätsbezogenen Mathematikunterricht 2- Realitätsbezüge im Mathematikunterricht. 1-9, (2014).
  11. W. Bock, M. Bracke, Project Teaching and Mathematical Modelling in STEM Subjects: A Design Based Research Study. Proceedings of CERME 8. (2013) 


  • Höhere Mathematik: Funktionentheorie für Ingenieure

Sommersemester 2018

  • Höhere Mathematik: Numerik für Ingenieure

Sommersemester 2018

  • Introduction to Infinite Dimensional System and Control Theory

Sommersemester 2018

  • Höhere Mathematik I für Ingenieure 

Sommersemester 2012, 2016, Wintersemester 2008/09, 2009/10, 2011/12

  • Höhere Mathematik II für Ingenieure 

Wintersemester 2017/18, Wintersemester 2015/16 

  • Höhere Mathematik III Vektoranalysis für Ingenieure

Wintersemester 2014/15

  • Mathematik-Vorkurs für Studienanfänger der Ingenieurs- und Wirtschaftswissenschaften

Wintersemester 2016/17, Sommersemester 2017, Wintersemester 2017/18

Compact Courses

  • A Primer on Fractional Brownian Motion, SEAMS-School, Yogjakarta, Indonesien, August 2016 
  • Introduction to Financial Mathematics, DAAD-Workshop, ITB, Bandung, Indonesia, Juni 2015
  • Introduction to Financial Mathematics, Workshop, Yogjakarta, Indonesia, Mai 2015
  • Introduction to Polymer Simulation, Tropical School, Jagna, Philippines, Mai 2015

Assisted Lectures

  • Höhere Mathematik I 

Sommersemester 2016, 2017, Wintersemester 2014/15, 2015/16, 2016/17, 2017/18 

  • Höhere Mathematik II 

Sommersemester 2016, 2017, Wintersemester 2015/16, 2016/17,2017/18

  • Höhere Mathematik III 

Wintersemester 2014/15

Assisted Lectures before PhD

  • Höhere Mathematik I (Vorlesung, Koordination und Übungsorganisation),

Wintersemester 2008/09, 2009/10, 2011/12, Sommersemester 2012

  • Höhere Mathematik II (Koordination und Übungsorganisation), 

Wintersemester 2010/11, Sommersemester 2013

  • Mathematik-Vorkurs für Studienanfänger der Ingenieurs- und Wirtschaftswissenschaften (Vorlesung, Koordination und Übungsorganisation), Sommersemester 2011
  • Grundlagen der Mathematik I (Tutor), Wintersemester 2005/06 und 2007/08, Sommersemester 2010
  • Grundlagen der Mathematik II (Tutor), Sommersemester 2006, 2007 und 2009
  • Introduction to Ordinary Differential Equations (Tutor), Sommersemester 2008
  • Introduction to Functional Analysis (Tutor), Wintersemester 2006/07
Zum Seitenanfang