Technomathematics Group

Dr. Florian Schneider

Office: 48-565

Phone: +49 (0)631 205 3829

E-mail: schneider(at)

  • L. Schlachter, F. Schneider (2018). 
    A hyperbolicity-preserving stochastic Galerkin approximation for uncertain hyperbolic systems of equations. 
    Journal of Computational Physics375, 80-98. 

  • F. Schneider, J. Kall, A. Roth (2017). 
    First-order quarter- and mixed-moment realizability theory and Kershaw closures for a Fokker-Planck equation in two space dimensions. 
    Kinetic and Related Models10, (04), 1127 - 1161. 

  • L. Müller, A. Meurer, F. Schneider, A. Klar (2017). 
    A numerical investigation of flux-limited approximations for pedestrian dynamics. 
    Mathematical Models and Methods in Applied Sciences27, (06), 1177-1197. 

  • F. Schneider (2017). 
    Second-order mixed-moment model with differentiable ansatz function in slab geometry. 
    Kinetic and related models. (to appear

  • F. Schneider, G. Alldredge, J. Kall (2016). 
    A realizability-preserving high-order kinetic scheme using WENO reconstruction for entropy-based moment closures of linear kinetic equations in slab geometry. 
    Kinetic and Related Models9, (1), 193 - 215. 

  • F. Schneider (2016). 
    Kershaw closures for linear transport equations in slab geometry I: model derivation. 
    Journal of Computational Physics322, 905-919. 
  • J. Ritter, A. Klar, F. Schneider (2016). 
    Partial-moment minimum-entropy models for kinetic chemotaxis equations in one and two dimensions. 
    Journal of Computational and Applied Mathematics306, 300-315. 

  • F. Schneider (2016). 
    Kershaw closures for linear transport equations in slab geometry II: high-order realizability-preserving discontinuous-Galerkin schemes. 
    Journal of Computational Physics322, 920-935. 

  • G. Alldredge, F. Schneider (2015). 
    A realizability-preserving discontinuous Galerkin scheme for entropy-based moment closures for linear kinetic equations in one space dimension. 
    Journal of Computational Physics295, 665-684. 
    [doi] [www] [BibTex] 

  • F. Schneider, G. Alldredge, M. Frank, A. Klar (2014). 
    Higher order mixed moment approximations for the Fokker-Planck equation in one space dimension. 
    SIAM Journal on Applied Mathematics74, (4), 1087-1114. 
  • A. Klar, F. Schneider, O. Tse (2014). 
    Maximum entropy models for stochastic dynamic systems on the sphere and associated Fokker-Planck equations. 
    Kinetic and Related Models (KRM)7, (3), 509 - 529. 


  • F. Schneider (2016). 
    Moment models in radiation transport equations. 260. 
    Dr. Hut Verlag: Sternstr. 18, 80538 München (Dissertation Technische Universität Kaiserslautern (2015)
    978-3-8439-2437-5 [www] [BibTex] 


  • F. Schneider (2011). 
    Optimal Design of Quantum Semiconductors. 
    TU Kaiserslautern 


  • G. Corbin, A. Hunt, F. Schneider, A. Klar, C. Surulescu (2018). 
    Higher-order models for glioma invasion: from a two-scale description to effective equations for mass density and momentum. 

  • B. Seibold, P. Chidyagwai, M. Frank, F. Schneider (2017). 
    A Comparative Study of Limiting Strategies in Discontinuous Galerkin Schemes for the M1 Model of Radiation Transport. 

  • L. Müller, A. Klar, F. Schneider (2017). 
    A numerical comparison of the method of moments for the population balance equation. 

  • R. Pinnau, S. Rau, F. Schneider, O. Tse (2014). 
    Optimal Control of the Stationary Quantum Drift-Diffusion Model in the Semi-Classical Limit. 


WS 2016/2017

  • Numerical Methods for Ordinary Differential Equations
  • Partial Differential Equations: An Introduction

SS 2016

  • Höhere Mathematik I

WS 2015/2016

  • Höhere Mathematik II

SS 2015

  • Höhere Mathematik II

WS 2014/2015

  • Höhere Mathematik III : Vektoranalysis
  • Höhere Mathematik III : Differentialgleichungen

WS 2013/2014

  • PraMa: Einführung in numerische Methoden

SS 2013

  • Höhere Mathematik IV: Numerik

Research interests

  • Moment methods and minimum entropy approximation
  • Higher order approximation of hyperbolic equations (Discontinuous Galerkin, WENO)
  • realizationability preserving methods 
  • Optimisation with PDEs 
Zum Seitenanfang