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What is this talk all about?

1 Efficient computations of Gröbner bases using Faugère’s F5
Algorithm and variants of it

2 Explanation of the F5 Algorithm, its criteria used to detect
useless s-polynomials

3 Presentation of the variant F5C which reduce some
inefficiencies of F5

4 Explanation and solution of the termination issue of F5
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The following section is about

1 Introducing Gröbner bases
Gröbner basics
Computation of Gröbner bases
Problem of zero reduction

2 The F5 Algorithm

3 Optimizations of F5

4 Termination issues of F5
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Basic problem

1 Given a ring R and an ideal I � R we want to compute a
Gröbner basis G of I .

2 G can be understood as a nice representation for I .
Gröbner bases were discovered by Bruno Buchberger in 1965
[Bu65]. Having computed G lots of difficult questions
concerning I are easier to answer using G instead of I .

3 This is due to some nice properties of Gröbner bases. The
following is very useful to understand how to compute a
Gröbner basis.
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Main properties of Göbner bases

Lemma
G = {g1, . . . , gn} is a Gröbner basis of an ideal I = 〈f1, . . . , fm〉 iff

G ⊂ I and 〈lm(g1), . . . , lm(gn)〉 = 〈lm(f1), . . . lm(fm)〉.
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Main properties of Göbner bases

Lemma
G = {g1, . . . , gn} is a Gröbner basis of an ideal I = 〈f1, . . . , fm〉 iff

G ⊂ I and 〈lm(g1), . . . , lm(gn)〉 = 〈lm(f1), . . . lm(fm)〉.

Lemma
Let G be a Gröbner basis of an ideal I . It holds that for all

p, q ∈ G it holds that

Spol(p, q)
G
−→ 0,

where

• Spol(p, q) = lc(q)upp − lc(p)uqq and

• uk = lcm(lm(p),lm(q))
lm(k) .
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A lovely example to get to know F5

Example

Assume the ideal I = 〈g1, g2〉 � Q[x , y , z ] where g1 = xy − z2,
g2 = y2 − z2; x > y > z .
Computing

Spol(g2, g1) = xg2 − yg1

= xy2 − xz2 − xy2 + yz2

= −xz2 + yz2,

we get a new element g3 = xz2 − yz2.
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Computation of Gröbner bases

The standard Buchberger Algorithm to compute G follows easily
from the previously stated property of G :
Input: Ideal I = 〈f1, . . . , fm〉
Output: Gröbner basis G of I

1 G = ∅

2 G := G ∪ {fi} for all i ∈ {1, . . . ,m}

3 Set P := {Spol(gi , gj ) | gi , gj ∈ G , i > j}
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Computation of Gröbner bases

The standard Buchberger Algorithm to compute G follows easily
from the previously stated property of G :
Input: Ideal I = 〈f1, . . . , fm〉
Output: Gröbner basis G of I

1 G = ∅

2 G := G ∪ {fi} for all i ∈ {1, . . . ,m}

3 Set P := {Spol(gi , gj ) | gi , gj ∈ G , i > j}

4 Choose p ∈ P , P := P \ {p}

(a) If p
G
−→ 0 ⇒ no new information

Go on with the next element in P .
(b) If p

G
−→ h 6= 0 ⇒ new information

Add h to G .
Build new s-polynomials with h and add them to P .
Go on with the next element in P .

5 When P = ∅ we are done and G is a Gröbner basis of I .
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Computing Gröbner bases incrementally

A slightly variant of this algorithm is the following computing the
Gröbner basis incrementally:
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Output: Gröbner basis G of I

1 Compute Gröbner basis G1 of 〈f1〉.

2 Compute Gröbner basis G2 of 〈f1, f2〉 by
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Computing Gröbner bases incrementally

A slightly variant of this algorithm is the following computing the
Gröbner basis incrementally:
Input: Ideal I = 〈f1, . . . , fm〉
Output: Gröbner basis G of I

1 Compute Gröbner basis G1 of 〈f1〉.

2 Compute Gröbner basis G2 of 〈f1, f2〉 by

(a) G2 = G1 ∪ {f2},
(b) computing s-polynomials of f2 with elements of G1

(c) reducing all s-polynomials w.r.t. G2 and possibly add new
elements to G2

3 . . .

4 G := Gm is the Gröbner basis of I
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Problem of zero reduction

Lots of useless computations

It is very time-consuming to compute G such that Spol(p, q)
reduces to zero w.r.t. G for all p, q ∈ G .
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Problem of zero reduction

Lots of useless computations

It is very time-consuming to compute G such that Spol(p, q)
reduces to zero w.r.t. G for all p, q ∈ G .
When such an s-polynomial reduces to an element h 6= 0 w.r.t. G

then we get new information for the structure of G , namely
adding h to G .
But most of the s-polynomials considered during the algorithm
reduce to zero w.r.t. G .
⇒ No new information from zero reductions

Let’s have a look at the example again:
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An example of zero reduction

Example

Given g1 = xy − z2, g2 = y2 − z2,we have computed

Spol(g2, g1) = xy2 − xz2 − xy2 + yz2 = −xz2 + yz2.
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An example of zero reduction

Example

Given g1 = xy − z2, g2 = y2 − z2,we have computed

Spol(g2, g1) = xy2 − xz2 − xy2 + yz2 = −xz2 + yz2.

We get a new element g3 = xz2 − yz2 for G .
Let us compute Spol(g3, g1) next:

Spol(g3, g1) = xyz2 − y2z2 − xyz2 + z4 = −y2z2 + z4.

Now we can reduce further with z2g2:

−y2z2 + z4 + y2z2 − z4 = 0.

⇒ How to detect zero reductions in advance?
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The following section is about

1 Introducing Gröbner bases

2 The F5 Algorithm
F5 basics
Drawbacks of F5

3 Optimizations of F5

4 Termination issues of F5
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Signatures of polynomials
Faugère’s idea is to give each polynomial during the computations
of the algorithm a so-called signature:
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Faugère’s idea is to give each polynomial during the computations
of the algorithm a so-called signature:

1 Assuming a polynomial p its signature is defined to be
S(p) = (t, ℓ) where t is its monomial and ℓ ∈ N is its index.

2 A generating element fi of I gets the signature S(fi) = (1, i).

3 We have an ordering ≺ on the signatures:

(t1, ℓ1) ≻ (t2, ℓ2) ⇔ (a)ℓ1 > ℓ2 or

(b)ℓ1 = ℓ2 and t1 > t2

Example

Assume Q[x , y , z ] with degree reverse lexicographical ordering.
Then

1 (x2y , 3) ≻ (z3, 3),

2 (1, 5) ≻ (x12y234z3456, 4).
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Signatures of polynomials

Remark
Note that there are other ways to define the ordering ≺ such that
it prefers the degree of the monomial and not the index [MMT92].
Implementations of F5 with different orderings:

(a) 2009 Ars and Hashemi [AH09]

(b) 2010 Sun and Wang [SW10]
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Signatures of polynomials

Remark
Note that there are other ways to define the ordering ≺ such that
it prefers the degree of the monomial and not the index [MMT92].
Implementations of F5 with different orderings:

(a) 2009 Ars and Hashemi [AH09]

(b) 2010 Sun and Wang [SW10]

Using the signatures in the F5 Algorithm we also need to define
them for s-polynomials:

Spol(p, q) = lc(q)upp − lc(p)uqq where S (Spol(p, q)) = upS(p)

where we assume that upS(p) ≻ uqS(q).
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Example revisited - with signatures

In our example

g3 = Spol(g2, g1) = xg2 − yg1

⇒ S(g3) = xS(g2) = x(1, 2) := (x , 2).
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Example revisited - with signatures

In our example

g3 = Spol(g2, g1) = xg2 − yg1

⇒ S(g3) = xS(g2) = x(1, 2) := (x , 2).

It follows that Spol(g3, g1) = yg3 − z2g1 has

S (Spol(g3, g1)) = yS(g3) = (xy , 2).

Note that S (Spol(g3, g1)) = (xy , 2) and lm(g1) = xy .
⇒ In F5 we know that Spol(g3, g1) will reduce to zero!
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How does this work?
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How does this work?

Let Spol(p, q) = lc(p)upp − lc(q)uqq with
S(p) = (s, k),S(q) = (t, ℓ).
Then Spol(p, q) does not need to be computed if

1 the leading monomial of some element p ∈ G of index smaller
k (ℓ) divides ups (uqt) (Faugère’s Criterion), or

2 the monomial of the signature of an element of index k (ℓ)
divides ups (uqt). (Rewritten Criterion)

Remark

1 F5’s criteria are based on the signatures.

2 F5 computes degree-wise in each iteration step.
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Difficulty of top-reduction in F5

On the one hand adding signatures to polynomials makes it
possible to use these powerful criteria,
on the other hand we have to keep track of the signatures, i.e.
we must be very careful when reducing elements.
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Difficulty of top-reduction in F5

On the one hand adding signatures to polynomials makes it
possible to use these powerful criteria,
on the other hand we have to keep track of the signatures, i.e.
we must be very careful when reducing elements.

Remark
We will see in the following example that we do not only need to be
careful if we are allowed to reduce an element, but also must
be able to generate new polynomials during reduction when
reducing with elements generated in the current iteration step.

Example

Assume the polynomial p = xy2 − z3 with S(p) = (tp, ℓ) and a
possible reducer q = y2 − xz with S(q) = (tq, ℓ).
In Buchberger-like implementations the top-reduction would take
place, i.e. we would compute p − xq.
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3 None of the above cases holds and xS(q) ≺ S(p) ⇒ p − xq is
computed and gets the signature S(p).

4 None of the first two cases holds and xS(q) ≻ S(p):

(a) p is not reduced, but searching for another possible reducer of
it.
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Difficulty of top-reduction in F5

Example

In F5 the following can happen:

1 If xS(q) satisfies Faugère’s Criterion ⇒ no reduction!

2 If xS(q) satisfies the Rewritten Criterion ⇒ no reduction!

3 None of the above cases holds and xS(q) ≺ S(p) ⇒ p − xq is
computed and gets the signature S(p).

4 None of the first two cases holds and xS(q) ≻ S(p):

(a) p is not reduced, but searching for another possible reducer of
it.

(b) A new s-polynomial r := xq − p where S(r) = xS(q) is
computed.
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Redundant polynomials

Example

Assuming one of the first two cases of the previous example and
moreover that there exists no other top-reducer of p we would end
up with both, p and q being in G whereas clearly lm(q) | lm(p).
Thus p is redundant for G at the moment it is added.
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Redundant polynomials

Example

Assuming one of the first two cases of the previous example and
moreover that there exists no other top-reducer of p we would end
up with both, p and q being in G whereas clearly lm(q) | lm(p).
Thus p is redundant for G at the moment it is added.

But. . .
For the F5 Algorithm itself and the criteria based on the signatures
p could be necessary in this iteration step!
⇒ Disrespecting the way F5 top-reduces polynomials would harm
the correctness of F5 in this iteration step!
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The following section is about

1 Introducing Gröbner bases

2 The F5 Algorithm

3 Optimizations of F5
Points of inefficiency
F5C: F5 Algorithm Computing with reduced Gröbner bases
Comparing F5 and F5C
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Points of inefficiency

The difficulty of top-reduction in F5 leads to an inefficiency,
namely we have way too many polynomials in the intermediate Gis

1 which are possible reducers, i.e. more checks for divisibility
and the criteria have to be done, and

2 with which we compute new s-polynomials, i.e. more (for the
resulting Gröbner basis redundant) data is generated.
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Points of inefficiency

The difficulty of top-reduction in F5 leads to an inefficiency,
namely we have way too many polynomials in the intermediate Gis

1 which are possible reducers, i.e. more checks for divisibility
and the criteria have to be done, and

2 with which we compute new s-polynomials, i.e. more (for the
resulting Gröbner basis redundant) data is generated.

Question

How can these two points be avoided as far as possible?
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F5C: Computations with reduced GB

In 2009 John Perry & Christian Eder have implemented a new
variant of the F5 Algorithm, called F5C.
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F5C uses the reduced Gröbner basis not only for reduction
purposes, but also for the generation of new s-polynomials:

1 Compute a Gröbner basis Gi of 〈f1, . . . , fi〉.

2 Compute the reduced Gröbner basis Bi of Gi .
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In 2009 John Perry & Christian Eder have implemented a new
variant of the F5 Algorithm, called F5C.
F5C uses the reduced Gröbner basis not only for reduction
purposes, but also for the generation of new s-polynomials:

1 Compute a Gröbner basis Gi of 〈f1, . . . , fi〉.

2 Compute the reduced Gröbner basis Bi of Gi .

3 Compute a Gröbner basis Gi+1 of 〈f1, . . . , fi+1〉 where

(a) Bi is used to build new s-polynomials with fi+1,
(b) Bi is used to reduce polynomials.

⇒ Fewer reductions and fewer polynomials generated and
considered during the algorithm
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How to use Bi for computations?

We have seen that if we interreduce Gi then the current
signatures are useless in the following.
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Recomputation of signatures

1 Delete all signatures.

2 Interreduce Gi to Bi .

3 For each element gk ∈ Bi set S(gk) = (1, k).

4 For all elements gj , gk ∈ Bi recompute signatures for
Spol(gj , gk).

5 Start the next iteration step with fi+1 by computing all
s-polynomials with elements from Bi .
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Implementations

Three free available implementations:

1 F5 & F5C as a Singular library (Perry & Eder)

2 F5 & F5C implemented in Python for Sage (Perry &
Albrecht): F4-ish reduction possible.

3 F5 & F5C implementation in the Singular kernel: under
development
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Comparing F5 and F5C

We are comparing F5 and F5C in the way that we use the same
implementation of the core algorithm for all variants.
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Comparing F5 and F5C

We are comparing F5 and F5C in the way that we use the same
implementation of the core algorithm for all variants.

Moreover we do not only compare

1 timings, but also

2 the number of reductions, and

3 the number of polynomials generated.
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Comparing F5 and F5C

Instead of the timings themselves we present the ratios of the
timings comparing the two variants.

system F5C / F5

Katsura 7 1.06

Katsura 8 0.83

Katsura 9 0.62

Schrans-Troost 0.71

Cyclic 6 0.60

Cyclic 7 0.49

Cyclic 8 0.62
Singular 3.1.0, kernel implementation; Linux-gentoo-r8 2009 x86 64, Intel Xeon @ 3.16 GHz, 64 GB RAM
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Number of reductions

system # red in F5 # red in F5C

Katsura 4 774 222

Katsura 5 14,597 3,985

Katsura 6 1,029,614 58,082

Cyclic 5 512 446

Cyclic 6 41,333 14,167
Sage 3.2.1, Python implementation; Ubuntu Linux 8.10, Intel Core 2 Quad @ 2.66 GHz, 3 GB RAM
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Number of polynomials generated

In the following we present internal data from the computation of
Katsura 9.
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Number of polynomials generated

In the following we present internal data from the computation of
Katsura 9.

i # Gi in F5 # Gi in F5C

2 2 2

3 4 4

4 8 8

5 16 15

6 32 29

7 60 51

8 132 109

9 524 472

10 1,165 778
Sage 3.2.1, Python implementation; Ubuntu Linux 8.10, Intel Core 2 Quad @ 2.66 GHz, 3 GB RAM

Skip
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The following section is about

1 Introducing Gröbner bases

2 The F5 Algorithm

3 Optimizations of F5

4 Termination issues of F5
Difficulty of top-reduction revisited
Resolving the termination issue
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Difficulty of top-reduction revisited

Remember that due to F5’s criteria redundant elements are
added to G .
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Difficulty of top-reduction revisited

Remember that due to F5’s criteria redundant elements are
added to G .
⇒ What happens if F5 computes infinitely many redundant
elements?

Termination of F5?
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Do we need those redundant elements?
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Do we need those redundant elements?

Yes, we do!

F5 works degree-wise in each iteration step.
Assume that lm(pk) | lm(pi), but the corresponding reductions
have not taken place when pi was computed.

1 If there is an element pm such that lm(pi ) | lm(pm), we
possibly need pi as reducer.

2 If Spol(pi , pj ) = λSpol(pk , pj ) +
∑

s λsps and Spol(pk , pj) is
not computed, we need Spol(pi , pj).
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Resolving the termination issue

Definition
An s-polynomial Spol(p, q) is called an F5-s-polynomial if either
lm(p) or lm(q) is redundant in G .

31 / 34



Resolving the termination issue

Definition
An s-polynomial Spol(p, q) is called an F5-s-polynomial if either
lm(p) or lm(q) is redundant in G .
Otherwise Spol(p, q) is called a GB-s-polynomial.

31 / 34



Resolving the termination issue

Definition
An s-polynomial Spol(p, q) is called an F5-s-polynomial if either
lm(p) or lm(q) is redundant in G .
Otherwise Spol(p, q) is called a GB-s-polynomial.

Example

Recall the last slide: Assume that lm(pj ) and lm(pk) are
non-redundant in G .
Then Spol(pi , pj) is an F5-s-polynomial as lm(pk) | lm(pi),
whereas Spol(pk , pj) is an GB-s-polynomial.
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Resolving the termination issue

1 After finitely many steps only F5-s-polynomials are left.
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Resolving the termination issue

1 After finitely many steps only F5-s-polynomials are left.

2 No GB-s-polynomial can be generated from this point
onwards.

3 We can go on with the next iteration step / terminate F5.
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Resolving the termination issue

1 We label each computed polynomial by a boolean value to
distinguish redundant and non-redundant ones.
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Resolving the termination issue

1 We label each computed polynomial by a boolean value to
distinguish redundant and non-redundant ones.

2 We add a global variable d in the implementation storing the
highest known degree GB-s-polynomials.

3 When computing new s-polynomials we have to check and
possibly change d ’s value.

4 If the degree of the next bunch of s-polynomials to be
computed is greater than d , we go to the next iteration step /
terminate the algorithm.

33 / 34
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