Signature-based Gröbner Basis Algorithms

Christian Eder

joint work with

Jean-Charles Faugère, Bjarke Hammersholt Roune, John Perry and Justin Gash

GBRELA2013 - Hagenberg, Austria

September 03 – 06, 2013
The basic problem

Signature basics

Signature-based criteria

A decade in signature-based Gröbner Basis algorithms
How to detect zero reductions in advance?

Example

Let \(l = \langle g_1, g_2 \rangle \in \mathbb{Q}[x, y, z] \), \(g_1 = xy - z^2 \), \(g_2 = y^2 - z^2 \).

\(<\) denotes the reverse lexicographical ordering.
How to detect zero reductions in advance?

Example

Let \(I = \langle g_1, g_2 \rangle \in \mathbb{Q}[x, y, z], g_1 = xy - z^2, g_2 = y^2 - z^2 \). < denotes the reverse lexicographical ordering.

\[
\text{spol}(g_2, g_1) = xg_2 - yg_1 = xy^2 - xz^2 - xy^2 + yz^2 = -xz^2 + yz^2.
\]

Thus it reduces to \(g_3 = xz^2 - yz^2 \) w.r.t. \(G \).
How to detect zero reductions in advance?

Example

Let \(I = \langle g_1, g_2 \rangle \in \mathbb{Q}[x, y, z] \), \(g_1 = xy - z^2 \), \(g_2 = y^2 - z^2 \). < denotes the reverse lexicographical ordering.

\[
\text{spol}(g_2, g_1) = xg_2 - yg_1 = xy^2 - xz^2 - xy^2 + yz^2 = -xz^2 + yz^2.
\]

Thus it reduces to \(g_3 = xz^2 - yz^2 \) w.r.t. \(G \).

\[
\text{spol}(g_3, g_1) = xyz^2 - y^2z^2 - xyz^2 + z^4 = -y^2z^2 + z^4.
\]
How to detect zero reductions in advance?

Example

Let \(I = \langle g_1, g_2 \rangle \in \mathbb{Q}[x, y, z] \), \(g_1 = xy - z^2 \), \(g_2 = y^2 - z^2 \). < denotes the reverse lexicographical ordering.

\[
spol(g_2, g_1) = xg_2 - yg_1 = xy^2 - xz^2 - xy^2 + yz^2 \\
= -xz^2 + yz^2.
\]

Thus it reduces to \(g_3 = xz^2 - yz^2 \) w.r.t. \(G \).

\[
spol(g_3, g_1) = xyz^2 - y^2z^2 - xyz^2 + z^4 = -y^2z^2 + z^4.
\]

We can reduce further using \(z^2g_2 \):

\[-y^2z^2 + z^4 + y^2z^2 - z^4 = 0.\]
How to detect zero reductions in advance?

Example

Let $I = \langle g_1, g_2 \rangle \in \mathbb{Q}[x, y, z]$, $g_1 = xy - z^2$, $g_2 = y^2 - z^2$. $<$ denotes the reverse lexicographical ordering.

$$spol(g_2, g_1) = xg_2 - yg_1 = xy^2 - xz^2 - xy^2 + yz^2$$
$$= -xz^2 + yz^2.$$

Thus it reduces to $g_3 = xz^2 - yz^2$ w.r.t. G.

$$spol(g_3, g_1) = xyz^2 - y^2z^2 - xyz^2 + z^4 = -y^2z^2 + z^4.$$

We can reduce further using z^2g_2:

$$-y^2z^2 + z^4 + y^2z^2 - z^4 = 0.$$

How to get rid of this zero reduction?
Let $I = \langle f_1, \ldots, f_m \rangle$.

Idea: Give each $f \in I$ a bit more structure:

1. Let R_m be generated by e_1, \ldots, e_m and let \prec be a compatible monomial order on the monomials of R_m.
2. Let $\alpha \mapsto \alpha: R_m \to R$ such that $e_i = f_i$ for all i.
3. Each $f \in I$ can be represented via some $\alpha \in R_m$: $f = \alpha$.
4. A signature of f is given by $s(f) = \text{lt}_\prec(\alpha)$ where $f = \alpha$.
Let \(I = \langle f_1, \ldots, f_m \rangle \).

Idea: Give each \(f \in I \) a bit more structure:

1. Let \(R^m \) be generated by \(e_1, \ldots, e_m \) and let \(\prec \) be a compatible monomial order on the monomials of \(R^m \).
Let \(I = \langle f_1, \ldots, f_m \rangle \).

Idea: Give each \(f \in I \) a bit more structure:

1. Let \(R^m \) be generated by \(e_1, \ldots, e_m \) and let \(\prec \) be a compatible monomial order on the monomials of \(R^m \).

2. Let \(\alpha \mapsto \bar{\alpha} : R^m \to R \) such that \(\bar{e_i} = f_i \) for all \(i \).
Let $I = \langle f_1, \ldots, f_m \rangle$.

Idea: Give each $f \in I$ a bit more structure:

1. Let R^m be generated by e_1, \ldots, e_m and let \prec be a compatible monomial order on the monomials of R^m.

2. Let $\alpha \mapsto \overline{\alpha} : R^m \rightarrow R$ such that $\overline{e}_i = f_i$ for all i.

3. Each $f \in I$ can be represented via some $\alpha \in R^m$: $f = \overline{\alpha}$
Let $I = \langle f_1, \ldots, f_m \rangle$.

Idea: Give each $f \in I$ a bit more structure:

1. Let R^m be generated by e_1, \ldots, e_m and let \prec be a compatible monomial order on the monomials of R^m.

2. Let $\alpha \mapsto \overline{\alpha} : R^m \to R$ such that $\overline{e_i} = f_i$ for all i.

3. Each $f \in I$ can be represented via some $\alpha \in R^m$: $f = \overline{\alpha}$

4. **A signature** of f is given by $s(f) = \text{lt}_{\prec}(\alpha)$ where $f = \overline{\alpha}$.
Our example again – now with signatures and \prec_{pot}

\[g_1 = xy - z^2, \quad s(g_1) = e_1, \]
\[g_2 = y^2 - z^2, \quad s(g_2) = e_2, \]
\[g_3 = \text{spol}(g_2, g_1) = xg_2 - yg_1 \]
\[\Rightarrow s(g_3) = x \cdot s(g_2) = xe_2. \]
Our example again – now with signatures and \(\prec_{\text{pot}} \)

\[
g_1 = xy - z^2, \ s(g_1) = e_1,
\]
\[
g_2 = y^2 - z^2, \ s(g_2) = e_2,
\]
\[
g_3 = \text{spol}(g_2, g_1) = xg_2 - yg_1
\]
\[
\Rightarrow s(g_3) = x s(g_2) = xe_2.
\]

\[
\text{spol}(g_3, g_1) = yg_3 - z^2 g_1:
\]
\[
\ s (\text{spol}(g_3, g_1)) = y s(g_3) = xye_2.
\]
Our example again – now with signatures and \prec_{pot}

\[g_1 = xy - z^2, \, s(g_1) = e_1, \]

\[g_2 = y^2 - z^2, \, s(g_2) = e_2, \]

\[g_3 = \text{spol}(g_2, g_1) = xg_2 - yg_1 \]

\[\Rightarrow s(g_3) = x \cdot s(g_2) = xe_2. \]

\[\text{spol}(g_3, g_1) = yg_3 - z^2g_1: \]

\[s(\text{spol}(g_3, g_1)) = y \cdot s(g_3) = xye_2. \]

Note that $s(\text{spol}(g_3, g_1)) = xye_2$ and $\text{lm}(g_1) = xy$.
Our example again – now with signatures and \prec_{pot}

\[
g_1 = xy - z^2, \; s(g_1) = e_1, \\
g_2 = y^2 - z^2, \; s(g_2) = e_2, \\
g_3 = \text{spol}(g_2, g_1) = xg_2 - yg_1
\]

$\Rightarrow s(g_3) = x \cdot s(g_2) = xe_2.$

\[
\text{spol}(g_3, g_1) = yg_3 - z^2g_1:
\]

\[
s\left(\text{spol}(g_3, g_1)\right) = y \cdot s(g_3) = yxe_2.
\]

Note that $s\left(\text{spol}(g_3, g_1)\right) = yxe_2$ and $\text{lm}(g_1) = xy.$

$\Rightarrow \text{We know that } \text{spol}(g_3, g_1) \text{ reduces to zero w.r.t. } G.$
How do we know this?

General idea: Per signature we only need to compute 1 element for G.

Choose 1 and remove the others.

Our goal: Make good choices.

Our task: Keep signatures correct.
General idea: Per signature we only need to compute 1 element for G.

Several elements with the same signature?
General idea: Per signature we only need to compute 1 element for G.

Several elements with the same signature?

Choose 1 and remove the others.
General idea: Per signature we only need to compute 1 element for G.

Several elements with the same signature?

Choose 1 and remove the others.

Our goal: Make good choices.
How do we know this?

General idea: Per signature we only need to compute 1 element for G.

Several elements with the same signature?

Choose 1 and remove the others.

Our goal: Make good choices.

Our task: Keep signatures correct.
\(\alpha \in \mathbb{R}^m \) stores all data needed:

- Polynomial \(\overline{\alpha} \) with leading term \(\text{lt}(\overline{\alpha}) \).

- Signature \(s(\overline{\alpha}) = s(\alpha) = \text{lt}(\alpha) \).
\(\alpha \in R^m \) stores all data needed:

- Polynomial \(\overline{\alpha} \) with leading term \(\text{lt} (\overline{\alpha}) \).
- Signature \([s(\alpha) =] s(\alpha) = \text{lt} (\alpha) \).

Conventions:

- \(\alpha \in R^m \) with \(\overline{\alpha} = 0 \) is a syzygy.

- \(s \)-reduction \(\equiv \) polynomial reduction \textbf{while retaining} signature

- \(s \)-reductions are always w.r.t. a finite basis \(G \subset R^m \).
Signature-based Gröbner Bases

- \(\mathcal{G} \) is a **signature-based Gröbner Basis in signature** \(T \) if all \(\alpha \in R^m \) with \(s(\alpha) = T \) \(s \)-reduce to zero w.r.t. \(\mathcal{G} \).

- \(\mathcal{G} \) is a **signature-based Gröbner Basis** if \(\mathcal{G} \) is a signature-based Gröbner Basis in all signatures.

- If \(\mathcal{G} \) is a signature-based Gröbner Basis then \(\{ \overline{\alpha} \mid \alpha \in \mathcal{G} \} \) is a Gröbner Basis for \(\langle f_1, \ldots, f_m \rangle \).
Signature-based Gröbner Bases

- G is a **signature-based Gröbner Basis in signature** T if all $\alpha \in R^m$ with $s(\alpha) = T$ s-reduce to zero w.r.t. G.

- G is a **signature-based Gröbner Basis** if G is a signature-based Gröbner Basis in all signatures.

- If G is a signature-based Gröbner Basis then $\{\overline{\alpha} \mid \alpha \in G\}$ is a Gröbner Basis for $\langle f_1, \ldots, f_m \rangle$.

Remark

In the following we need one detail from signature-based Gröbner Basis computations:

The pair set is ordered by increasing signature.
The basic problem

Signature basics

Signature-based criteria

A decade in signature-based Gröbner Basis algorithms
Signature-based criteria

\[s(\alpha) = s(\beta) \implies \text{Compute 1, remove 1.} \]
Signature-based criteria

\[s(\alpha) = s(\beta) \implies \text{Compute 1, remove 1.} \]

Sketch of proof

1. \(s(\alpha - \beta) \prec s(\alpha), s(\beta) \).
2. All S-pairs are handled by increasing signature.
 \(\Rightarrow \) All relations \(\prec s(\alpha) \) are known:
 \[\alpha = \beta + \text{elements of smaller signature} \]
Signature-based criteria

S-pairs in signature T

Define an order on R_T and choose the maximal element.
Signature-based criteria

S-pairs in signature T

What are all possible configurations to reach signature T?
S-signature-based criteria

What are all possible configurations to reach signature T?

$\mathcal{R}_T = \{ a\alpha \mid \alpha \text{ handled by the algorithm and } s(a\alpha) = T \}$
What are all possible configurations to reach signature T?

Define an order on \mathcal{R}_T and choose the maximal element.

$\mathcal{R}_T = \{ a\alpha \mid \alpha \text{ handled by the algorithm and } s(a\alpha) = T \}$
Special cases

\[R_T = \left\{ a\alpha \mid \alpha \text{ handled by the algorithm and } s(a\alpha) = T \right\} \]
Special cases

$\mathcal{R}_T = \left\{ a\alpha \mid \alpha \text{ handled by the algorithm and } s(a\alpha) = T \right\}$

1. If $a\alpha$ is a syzygy \implies Go on to next signature.
Special cases

\[\mathcal{R}_T = \left\{ a\alpha \mid \alpha \text{ handled by the algorithm and } s(a\alpha) = T \right\} \]

1. If \(a\alpha \) is a syzygy \(\implies \) Go on to next signature.
2. If \(a\alpha \) is not part of an S-pair \(\implies \) Go on to next signature.
Special cases

$$R_T = \left\{ a\alpha \mid \alpha \text{ handled by the algorithm and } s(a\alpha) = T \right\}$$

1. If $a\alpha$ is a syzygy \implies Go on to next signature.
2. If $a\alpha$ is not part of an S-pair \implies Go on to next signature.

Revisiting our example with \prec_{pot}

$$s \left(spol(g_3, g_1) \right) = xye_2$$
$$g_1 = xy - z^2$$
$$g_2 = y^2 - z^2$$

$$\implies psyz(g_2, g_1) = g_1 e_2 - g_2 e_1 = xye_2 + \ldots$$
The basic problem

Signature basics

Signature-based criteria

A decade in signature-based Gröbner Basis algorithms
A decade in signature-based Gröbner Basis algorithms

F5
Faugère (2002)
A decade in signature-based Gröbner Basis algorithms

- **Quasihomog F5**
 - Faugère, Safey El-Din, Verron (2013)

- **F5 using sym**
 - Faugère, Svartz (2013)

- **SAGBI F5**
 - Faugère, Rahmany (2009)

- **Matrix F5**
 - Bardet (2002)

- **F5 with BC**
 - Aris (2005)

- **Bihomog F5**
 - Faugère, Safey El-Din, Spaenlehauer (2011)

- **Extended F5 Criteria**
 - Aris, Hashemi (2009)

- **F4/5**
 - Albrecht, Perry (2010)

- **Involutive F5**
 - Gerdt, Hashemi, Alizadeh (2013)

- **Matrix F5**
 - Bardet (2002)

- **F5C**
 - Perry, E. (2009)

- **iF5A**
 - E. (2012)

- **F5A**
 - Perry, E. (2011)

- **F5 with BC**
 - Aris (2005)

- **AP**
 - Arri, Perry (2009)

- **AP1**
 - Arri, Perry, E. (2011)

- **AP2**
 - Arri, Perry, E. (2012)

- **SB**
 - Roune, Stillmann (2012)

- **nF5**
 - E. (2012)
[FL10] J.-C. Faugère and S. Lachartre. Parallel Gaussian Elimination for Gröbner bases computations in finite fields