Signature Rewriting in Gröbner Basis Computation

Christian Eder
joint work with Bjarke Hammersholt Roune

POLSYS Team, UPMC, Paris, France

June 29, 2013
Signature-based algorithms

The basic idea

Generic signature-based criteria

Rewritable signature criterion in detail
Signatures of polynomials

Let \(I = \langle f_1, \ldots, f_m \rangle \).

Idea: Give each \(f \in I \) a bit more structure:

1. Let \(R_m \) be generated by \(e_1, \ldots, e_m \), \(\prec \) a well-ordering on the monomials of \(R_m \), and let \(\alpha \mapsto \alpha : R_m \to R \) such that \(e_i = f_i \) for all \(i \).
2. Each \(p \in I \) can be represented by an \(\alpha = \sum_{i=1}^{m} h_i e_i \in R_m \) such that \(p = \alpha \).
3. A signature of \(p \) is given by \(s(p) = \text{lt}_{\prec}(\alpha) \) with \(p = \alpha \).
4. A minimal signature of \(p \) exists due to \(\prec \).
Signatures of polynomials

Let $I = \langle f_1, \ldots, f_m \rangle$.

Idea: Give each $f \in I$ a bit more structure:

1. Let R^m be generated by e_1, \ldots, e_m, \prec a well-ordering on the monomials of R^m, and let $\alpha \mapsto \overline{\alpha} : R^m \to R$ such that

 $$\overline{e}_i = f_i$$

 for all i.

Signatures of polynomials

Let $I = \langle f_1, \ldots, f_m \rangle$.

Idea: Give each $f \in I$ a bit more structure:

1. Let R^m be generated by e_1, \ldots, e_m, \prec a well-ordering on the monomials of R^m, and let $\alpha \mapsto \overline{\alpha} : R^m \to R$ such that

 \[\overline{e_i} = f_i \text{ for all } i. \]

2. Each $p \in I$ can be represented by an

 \[\alpha = \sum_{i=1}^{m} h_i e_i \in R^m \text{ such that } p = \overline{\alpha}. \]
Signatures of polynomials

Let \(I = \langle f_1, \ldots, f_m \rangle \).

Idea: Give each \(f \in I \) a bit more structure:

1. Let \(R^m \) be generated by \(e_1, \ldots, e_m \), \(\prec \) a well-ordering on the monomials of \(R^m \), and let \(\alpha \mapsto \overline{\alpha} : R^m \to R \) such that
 \[
 \overline{e}_i = f_i \text{ for all } i.
 \]

2. Each \(p \in I \) can be represented by an
 \[
 \alpha = \sum_{i=1}^{m} h_ie_i \in R^m \text{ such that } p = \overline{\alpha}.
 \]

3. **A signature** of \(p \) is given by
 \[
 s(p) = \text{lt}_\prec(\alpha) \text{ with } p = \overline{\alpha}.
 \]
Signatures of polynomials

Let $I = \langle f_1, \ldots, f_m \rangle$.

Idea: Give each $f \in I$ a bit more structure:

1. Let R^m be generated by e_1, \ldots, e_m, \prec a well-ordering on the monomials of R^m, and let $\alpha \mapsto \overline{\alpha} : R^m \to R$ such that
 \[\overline{e_i} = f_i \text{ for all } i. \]

2. Each $p \in I$ can be represented by an
 \[\alpha = \sum_{i=1}^{m} h_i e_i \in R^m \text{ such that } p = \overline{\alpha}. \]

3. A signature of p is given by
 \[s(p) = \text{lt}_\prec(\alpha) \text{ with } p = \overline{\alpha}. \]

4. A minimal signature of p exists due to \prec.
Notations concerning signatures

Let $\alpha \in R^m$, then α contains all data we need:

- The polynomial data is $\overline{\alpha}$, its leading term denoted by $\text{lt}(\overline{\alpha})$.
- The signature is $s(\alpha) = \text{lt}(\alpha)$.
Notations concerning signatures

Let $\alpha \in R^m$, then α contains all data we need:

- The polynomial data is $\overline{\alpha}$, its leading term denoted by $\text{lt}(\overline{\alpha})$.
- The signature is $s(\alpha) = \text{lt}(\alpha)$.

Moreover, we agree on the following:

- For $\alpha, \beta \in R^m$, let $\alpha \simeq \beta$ if $\alpha = s\beta$ for some $s \in K$. In the same sense we define $\overline{\alpha} \simeq \overline{\beta}$ if $\overline{\alpha} = t\overline{\beta}$ for some $t \in K$.

- G always denotes a finite subset of R^m such that for all $\alpha, \beta \in G$ with $s(\alpha) \simeq s(\beta)$ it holds that $\alpha = \beta$.

- $\alpha \in R^m$ is called a syzygy if $\overline{\alpha} = 0$.
Reductions concerning signatures

Let \(\alpha \in R^m \), and let \(t \) be a term of \(\overline{\alpha} \). We can \(s \)-reduce \(t \) by \(\beta \in R^m \) if

\[
\begin{align*}
\exists \text{ a term } b & \text{ such that } \text{lt} (b\beta) = t \text{ and } \\
\text{s} (b\beta) & \preceq s (\alpha).
\end{align*}
\]
Let $\alpha \in R^m$, and let t be a term of $\overline{\alpha}$. We can s-reduce t by $\beta \in R^m$ if

\exists a term b such that $\text{lt}(b\beta) = t$ and $s(b\beta) \preceq s(\alpha)$.

Note

We distinguish 2 types of s-reduction:
Reductions concerning signatures

Let $\alpha \in R^m$, and let t be a term of α. We can s-reduce t by $\beta \in R^m$ if

- \exists a term b such that $\text{lt}(b\beta) = t$ and
- $s(b\beta) \preceq s(\alpha)$.

Note

We distinguish 2 types of s-reduction:

1. If $\text{lt}(b\beta) \sim \text{lt}(\alpha) \implies$ top s-reduction step;
 otherwise \implies tail s-reduction step.
Let $\alpha \in R^m$, and let t be a term of $\bar{\alpha}$. We can s-reduce t by $\beta \in R^m$ if

- \exists a term b such that $\text{lt}(b\beta) = t$ and
- $s(b\beta) \preceq s(\alpha)$.

Note

We distinguish 2 types of s-reduction:

1. If $\text{lt}(b\beta) \simeq \text{lt}(\bar{\alpha}) \implies \text{top } s$-reduction step;
 otherwise $\implies \text{tail } s$-reduction step.

2. If $s(b\beta) \simeq s(\alpha) \implies \text{singular } s$-reduction step;
 otherwise $\implies \text{regular } s$-reduction step.
Signature Gröbner bases

- \(s \)-reductions are always performed w.r.t. a finite basis \(\mathcal{G} \subset R^m \).

- \(\mathcal{G} \) is a **signature Gröbner basis in signature** \(T \) if all \(\alpha \in R^m \) with \(s(\alpha) = T \) \(s \)-reduce to zero w.r.t \(\mathcal{G} \).

- \(\mathcal{G} \) is a **signature Gröbner basis** if it is a signature Gröbner basis in all signatures.

- If \(\mathcal{G} \) is a signature Gröbner basis, then \(\{ \overline{\alpha} \mid \alpha \in \mathcal{G} \} \) is a Gröbner basis for \(\langle f_1, \ldots, f_m \rangle \).

Note

In the following we do not need much of the details of signature-based Gröbner basis algorithms, just one property:

The pair set is ordered by increasing signatures.
Generic signature-based criteria

Non-minimal signature (NM)

$s(\alpha)$ not minimal for α? \Rightarrow Remove α.

Sketch of proof

1. There exists a syzygy $\beta \in R_m$ such that $\text{lt}(\beta) = s(\alpha)$. \Rightarrow We can represent α with a lower signature.
2. Pairs are handled by increasing signatures. \Rightarrow All relations of lower signature are already taken care of.
Generic signature-based criteria

Non-minimal signature (NM)

$\mathcal{s}(\alpha)$ not minimal for α? \Rightarrow Remove α.

Sketch of proof

1. There exists a syzygy $\beta \in R^m$ such that $\text{lt}(\beta) = \mathcal{s}(\alpha)$.
 \Rightarrow We can represent $\bar{\alpha}$ with a lower signature.

2. Pairs are handled by increasing signatures.
 \Rightarrow All relations of lower signature are already taken care of.
Generic signature-based criteria

Rewritable signature (RW)

\[s(\alpha) = s(\beta) \implies \text{Remove either } \alpha \text{ or } \beta. \]
Rewritable signature (RW)

$s(\alpha) = s(\beta) \Rightarrow$ Remove either α or β.

Sketch of proof

1. $s(\alpha - \beta) \prec s(\alpha), s(\beta)$.
2. Pairs are handled by increasing signatures.
 \Rightarrow All necessary computations of lower signature have already taken place.
 \Rightarrow We can represent β by

 \[
 \beta = \alpha + \text{elements of lower signature}.
 \]
Signature-based algorithms
The basic idea
Generic signature-based criteria

Rewritable signature criterion in detail
The concept of rewrite bases

Rewriter and rewritable elements
Rewriter and rewritable elements

- A **rewrite order** \triangleleft is a total order on \mathcal{G} such that $s(\alpha) \mid s(\beta) \Rightarrow \alpha \triangleleft \beta$. (Exists due to $s(\alpha) \simeq s(\beta) \Rightarrow \alpha = \beta$.)
Rewriter and rewratable elements

- A **rewrite order** \triangleleft is a total order on \mathcal{G} such that $s(\alpha) \mid s(\beta) \Rightarrow \alpha \triangleleft \beta$. (Exists due to $s(\alpha) \simeq s(\beta) \Rightarrow \alpha = \beta$.)

- An element $\alpha \in \mathcal{G}$ is a **rewriter in signature** \mathcal{T} if $s(\alpha) \mid \mathcal{T}$.
Rewriter and rewritable elements

- A **rewrite order** \triangleright is a total order on G such that $s(\alpha) \triangleright s(\beta) \Rightarrow \alpha \triangleright \beta$. (Exists due to $s(\alpha) \simeq s(\beta) \Rightarrow \alpha = \beta$.)

- An element $\alpha \in G$ is a **rewriter in signature** T if $s(\alpha) \triangleright T$.

- The \triangleleft-maximal rewriter in signature T is the **canonical rewriter in** T.
The concept of rewrite bases

Rewriter and rewritable elements

- A **rewrite order** \(<\)** is a total order on \(\mathcal{G} \) such that \(s(\alpha) | s(\beta) \Rightarrow \alpha \triangleleft \beta \). (Exists due to \(s(\alpha) \simeq s(\beta) \Rightarrow \alpha = \beta \).)

- An element \(\alpha \in \mathcal{G} \) is a **rewriter in signature** \(T \) if \(s(\alpha) | T \).

- The \(\triangleleft \)-maximal rewriter in signature \(T \) is the **canonical rewriter in** \(T \).

- A multiple of a basis element \(t\alpha \) is called **rewritable** if \(\alpha \) is not the canonical rewriter in \(s(t\alpha) \).
The concept of rewrite bases

Rewrite Bases

G is a rewrite basis in signature T if the canonical rewriter in T is not regular \(s \)-reducible or if T is a syzygy signature.

G is a rewrite basis if it is a rewrite basis in all signatures.

Lemma
If G is a rewrite basis up to signature T then G is also a signature Gröbner basis up to T.
The concept of rewrite bases

Rewrite Bases

▶ \(\mathcal{G} \) is a \textbf{rewrite basis in signature} \(T \) if the canonical rewriter in \(T \) is not regular \(s \)-reducible or if \(T \) is a syzygy signature.
The concept of rewrite bases

Rewrite Bases

- \mathcal{G} is a **rewrite basis in signature** T if the canonical rewriter in T is not regular s-reducible or if T is a syzygy signature.
- \mathcal{G} is a **rewrite basis** if it is a rewrite basis in all signatures.
The concept of rewrite bases

Rewrite Bases

- \(G \) is a **rewrite basis in signature** \(T \) if the canonical rewriter in \(T \) is not regular \(s \)-reducible or if \(T \) is a syzygy signature.

- \(G \) is a **rewrite basis** if it is a rewrite basis in all signatures.

Lemma

If \(G \) is a rewrite basis up to signature \(T \) then \(G \) is also a signature Gröbner basis up to \(T \).
Improving the rewritable signature criterion

RB (generic rewrite base algorithm)

Let α and $\beta \in G$ such that $s(\alpha) = a \cdot e^i$ and $s(\beta) = b \cdot e^j$.

$\alpha \prec \beta \iff (i < j) \text{ or } (i = j \text{ and } a < b)$

Once an s-polynomial in a given signature T is computed all others are rewritable.

$\alpha \prec \beta \iff s(\alpha) \lt(\alpha) \prec s(\beta) \lt(\beta)$

For any signature T define $M_T = \{ t_\alpha \mid \alpha \in G, s(t_\alpha) = T \}$

Choose t_α such that $\lt(t_\alpha)$ is minimal.

Difference: There might be no such s-polynomial.
Improving the rewritable signature criterion

RB (generic rewrite base algorithm)

F5
(as presented in [Fa02])

Let \(\alpha \) and \(\beta \) \(\in G \) such that \(s(\alpha) = a^{e_i} \) and \(s(\beta) = b^{e_j} \).

\[\alpha \triangleleft \beta \iff (i < j) \text{ or } (i = j \text{ and } a < b) \]

Once an \(s \)-polynomial in a given signature \(T \) is computed all others are rewritable.

\[\alpha \triangleleft \beta \iff s(\alpha) \prec s(\beta) \]

For any signature \(T \) define \(M_T = \{ t_\alpha | \alpha \in G, s(t_\alpha) = T \} \)

Choose \(t_\alpha \) such that \(\prec t_\alpha \) is minimal.

Difference: There might be no such \(s \)-polynomial
Improving the rewritable signature criterion

RB (generic rewrite base algorithm)

F5
(as presented in [Fa02])

AP/GVW/SB

Let α and $\beta \in G$ such that $s(\alpha) = a^i e_i$ and $s(\beta) = b^j e_j$.

$\alpha \triangleright \beta \iff (i < j) \text{ or } (i = j \text{ and } a < b)$

Once an s-polynomial in a given signature T is computed all others are rewritable.

$\alpha \triangleright \beta \iff s(\alpha) \prec s(\beta)$

For any signature T define $M_T = \{ t_\alpha | \alpha \in G, s(t_\alpha) = T \}$

Choose t_α such that $\prec t_\alpha$ is minimal.

Difference: There might be no such s-polynomial.
Let α and $\beta \in \mathcal{G}$ such that $s(\alpha) = ae_i$ and $s(\beta) = be_j$.
Let α and $\beta \in G$ such that $s(\alpha) = ae_i$ and $s(\beta) = be_j$.

\[
\alpha \triangleleft \beta \iff (i < j) \text{ or } (i = j \text{ and } a < b)
\]

Once an s-polynomial in a given signature T is computed all others are rewritable.
Improving the rewritable signature criterion

Let α and $\beta \in G$ such that $s(\alpha) = ae_i$ and $s(\beta) = be_j$.

$\alpha \triangleleft \beta \iff \begin{cases} i < j \text{ or } (i = j \text{ and } a < b) \end{cases}$

Once an s-polynomial in a given signature T is computed all others are rewritable.

For any signature T define

\[M_T = \{ t\alpha \mid \alpha \in G, s(t\alpha) = T \} \]

Choose $t\alpha$ such that $\text{lt}(t\alpha)$ is minimal.
Improving the rewritable signature criterion

RB (generic rewrite base algorithm)

F5 (as presented in [Fa02])

AP/GVW/SB

Let α and $\beta \in G$ such that $s(\alpha) = ae_i$ and $s(\beta) = be_j$.

$\alpha \triangleleft \beta \iff (i < j) \text{ or } (i = j \text{ and } a < b)$

Once an s-polynomial in a given signature T is computed all others are rewritable.

$\alpha \triangleleft \beta \iff \frac{s(\alpha)}{\text{lt}(\alpha)} < \frac{s(\beta)}{\text{lt}(\beta)}$

For any signature T define $M_T = \{ t\alpha | \alpha \in G, s(t\alpha) = T \}$

Choose $t\alpha$ such that $\text{lt}(t\alpha)$ is minimal.

Difference: There might be no such s-polynomial
Example for differences in the rewritable signature criterion

Let K be the finite field with 13 elements and let $R := K[x, y, z, t]$. Let $<$ be the graded reverse lexicographic monomial ordering. Consider the three input elements

$$g_1 := -2y^3 - x^2 z - 2x^2 t - 3y^2 t,$$
$$g_2 := 3xyz + 2xyt,$$
$$g_3 := 2xyz - 2yz^2 + 2z^3 + 4yzt.$$
Example for differences in the rewritable signature criterion

Let K be the finite field with 13 elements and let $R := K[x, y, z, t]$. Let $<$ be the graded reverse lexicographic monomial ordering. Consider the three input elements

$$g_1 := -2y^3 - x^2 z - 2x^2 t - 3y^2 t,$$
$$g_2 := 3xyz + 2xyt,$$
$$g_3 := 2xyz - 2yz^2 + 2z^3 + 4yzt.$$

<table>
<thead>
<tr>
<th>$\alpha_i \in \mathcal{G}$</th>
<th>reduced from</th>
<th>$\text{lt}(\alpha_i)$</th>
<th>$\mathcal{s}(\alpha_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_1</td>
<td>e_1</td>
<td>y^3</td>
<td>e_1</td>
</tr>
<tr>
<td>α_2</td>
<td>e_2</td>
<td>xyz</td>
<td>e_2</td>
</tr>
<tr>
<td>α_3</td>
<td>$y^2 \alpha_2 - xz \alpha_1 = S(\alpha_2, \alpha_1)$</td>
<td>$x^3 z^2$</td>
<td>$y^2 e_2$</td>
</tr>
<tr>
<td>α_4</td>
<td>e_3</td>
<td>yz^2</td>
<td>e_3</td>
</tr>
<tr>
<td>α_5</td>
<td>$x \alpha_4 - z \alpha_2 = S(\alpha_4, \alpha_2)$</td>
<td>xz^3</td>
<td>xe_3</td>
</tr>
<tr>
<td>α_6</td>
<td>$y^2 \alpha_4 - z^2 \alpha_1 = S(\alpha_4, \alpha_1)$</td>
<td>$x^2 z^3$</td>
<td>$y^2 e_3$</td>
</tr>
<tr>
<td>α_7</td>
<td>$y \alpha_5 - z^2 \alpha_2 = S(\alpha_5, \alpha_2)$</td>
<td>$x^2 y^2 t$</td>
<td>xye_3</td>
</tr>
<tr>
<td>α_8</td>
<td>$x \alpha_5 - \alpha_6 = S(\alpha_5, \alpha_6)$</td>
<td>z^5</td>
<td>$x^2 e_3$</td>
</tr>
<tr>
<td>α_9</td>
<td>$x \alpha_6 - z \alpha_3 = S(\alpha_6, \alpha_3)$</td>
<td>$x^4 zt$</td>
<td>$xy^2 e_3$</td>
</tr>
<tr>
<td>α_{10}</td>
<td>$y \alpha_8 - z^3 \alpha_4 = S(\alpha_8, \alpha_4)$</td>
<td>$x^3 y^2 t$</td>
<td>$x^2 ye_3$</td>
</tr>
<tr>
<td>α_{11}</td>
<td>$x^3 \alpha_4 - y \alpha_3 = S(\alpha_4, \alpha_3)$</td>
<td>$x^4 yt$</td>
<td>$x^3 e_3$</td>
</tr>
<tr>
<td>α_{12}</td>
<td>$z \alpha_{11} - x^3 \alpha_2 = S(\alpha_{11}, \alpha_2)$</td>
<td>$x^3 zt^3$</td>
<td>$x^3 ze_3$</td>
</tr>
<tr>
<td>α_{13}</td>
<td>$y \alpha_{10} - x^3 \alpha_1 = S(\alpha_{10}, \alpha_1)$</td>
<td>$x^5 zt$</td>
<td>$x^2 y^2 e_3$</td>
</tr>
<tr>
<td>α_{14}</td>
<td>$x \alpha_{12} - \alpha_9 = S(\alpha_{12}, \alpha_9)$</td>
<td>$x^4 t^4$</td>
<td>$x^4 ze_3$</td>
</tr>
</tbody>
</table>
Example for differences in the rewritable signature criterion

Let K be the finite field with 13 elements and let $R := K[x, y, z, t]$. Let $<$ be the graded reverse lexicographic monomial ordering. Consider the three input elements

$$g_1 := -2y^3 - x^2z - 2x^2t - 3y^2t,$$
$$g_2 := 3xyz + 2xyt,$$
$$g_3 := 2xyz - 2yz^2 + 2z^3 + 4yzt.$$

<table>
<thead>
<tr>
<th>$\alpha_i \in G$</th>
<th>reduced from</th>
<th>$\text{lt} (\overline{\alpha_i})$</th>
<th>$s(\alpha_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_1</td>
<td>e_1</td>
<td>y^3</td>
<td>e_1</td>
</tr>
<tr>
<td>α_2</td>
<td>e_2</td>
<td>xyz</td>
<td>e_2</td>
</tr>
<tr>
<td>α_3</td>
<td>$y^2\alpha_2 - xz\alpha_1 = S(\alpha_2, \alpha_1)$</td>
<td>x^3z^2</td>
<td>y^2e_2</td>
</tr>
<tr>
<td>α_4</td>
<td>e_3</td>
<td>yz^2</td>
<td>e_3</td>
</tr>
<tr>
<td>α_5</td>
<td>$x\alpha_4 - z\alpha_2 = S(\alpha_4, \alpha_2)$</td>
<td>xz^3</td>
<td>xe_3</td>
</tr>
<tr>
<td>α_6</td>
<td>$y^2\alpha_4 - z^2\alpha_1 = S(\alpha_4, \alpha_1)$</td>
<td>x^2z^3</td>
<td>y^2e_3</td>
</tr>
<tr>
<td>α_7</td>
<td>$y\alpha_5 - z^2\alpha_2 = S(\alpha_5, \alpha_2)$</td>
<td>x^2y^2t</td>
<td>xye_3</td>
</tr>
<tr>
<td>α_8</td>
<td>$x\alpha_5 - \alpha_6 = S(\alpha_5, \alpha_6)$</td>
<td>z^5</td>
<td>x^2e_3</td>
</tr>
<tr>
<td>α_9</td>
<td>$x\alpha_6 - z\alpha_3 = S(\alpha_6, \alpha_3)$</td>
<td>x^4zt</td>
<td>xy^2e_3</td>
</tr>
<tr>
<td>α_{10}</td>
<td>$y\alpha_8 - z^3\alpha_4 = S(\alpha_8, \alpha_4)$</td>
<td>x^3y^2t</td>
<td>x^2ye_3</td>
</tr>
<tr>
<td>α_{11}</td>
<td>$x^3\alpha_4 - y\alpha_3 = S(\alpha_4, \alpha_3)$</td>
<td>x^4yt</td>
<td>x^3e_3</td>
</tr>
<tr>
<td>α_{12}</td>
<td>$z\alpha_{11} - x^3\alpha_2 = S(\alpha_{11}, \alpha_2)$</td>
<td>x^3zt^3</td>
<td>x^3ze_3</td>
</tr>
<tr>
<td>α_{13}</td>
<td>$y\alpha_{10} - x^3\alpha_1 = S(\alpha_{10}, \alpha_1)$</td>
<td>x^5zt</td>
<td>$x^2y^2e_3$</td>
</tr>
<tr>
<td>α_{14}</td>
<td>$x\alpha_{12} - \alpha_9 = S(\alpha_{12}, \alpha_9)$</td>
<td>x^4t^4</td>
<td>x^4ze_3</td>
</tr>
</tbody>
</table>
Example for differences in the rewritable signature criterion

Let K be the finite field with 13 elements and let $R := K[x, y, z, t]$. Let $<$ be the graded reverse lexicographic monomial ordering. Consider the three input elements

$g_1 := -2y^3 - x^2 z - 2x^2 t - 3y^2 t$, $g_2 := 3xyz + 2xyt$,

$g_3 := 2xyz - 2yz^2 + 2z^3 + 4yzt$.

<table>
<thead>
<tr>
<th>$\alpha_i \in G$</th>
<th>reduced from</th>
<th>$\text{lt} (\alpha_i)$</th>
<th>$s(\alpha_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_1</td>
<td>\mathbf{e}_1</td>
<td>y^3</td>
<td>\mathbf{e}_1</td>
</tr>
<tr>
<td>α_2</td>
<td>\mathbf{e}_2</td>
<td>xyz</td>
<td>\mathbf{e}_2</td>
</tr>
<tr>
<td>α_3</td>
<td>$y^2\alpha_2 - xz\alpha_1 = S(\alpha_2, \alpha_1)$</td>
<td>$x^3 z^2$</td>
<td>$y^2 \mathbf{e}_2$</td>
</tr>
<tr>
<td>α_4</td>
<td>\mathbf{e}_3</td>
<td>yz^2</td>
<td>\mathbf{e}_3</td>
</tr>
<tr>
<td>α_5</td>
<td>$x\alpha_4 - z \alpha_2 = S(\alpha_4, \alpha_2)$</td>
<td>xz^3</td>
<td>$x \mathbf{e}_3$</td>
</tr>
<tr>
<td>α_6</td>
<td>$y^2\alpha_4 - z^2 \alpha_1 = S(\alpha_4, \alpha_1)$</td>
<td>$x^2 z^3$</td>
<td>$y^2 \mathbf{e}_3$</td>
</tr>
<tr>
<td>α_7</td>
<td>$y\alpha_5 - z^2 \alpha_2 = S(\alpha_5, \alpha_2)$</td>
<td>$x^2 y^2 t$</td>
<td>$xy \mathbf{e}_3$</td>
</tr>
<tr>
<td>α_8</td>
<td>$x\alpha_5 - \alpha_6 = S(\alpha_5, \alpha_6)$</td>
<td>z^5</td>
<td>$x^2 \mathbf{e}_3$</td>
</tr>
<tr>
<td>α_9</td>
<td>$x\alpha_6 - z \alpha_3 = S(\alpha_6, \alpha_3)$</td>
<td>$x^4 zt$</td>
<td>$xy^2 \mathbf{e}_3$</td>
</tr>
<tr>
<td>α_{10}</td>
<td>$y\alpha_8 - z^3 \alpha_4 = S(\alpha_8, \alpha_4)$</td>
<td>$x^3 y^2 t$</td>
<td>$x^2 y \mathbf{e}_3$</td>
</tr>
<tr>
<td>α_{11}</td>
<td>$x^3 \alpha_4 - y \alpha_3 = S(\alpha_4, \alpha_3)$</td>
<td>$x^4 yt$</td>
<td>$x^3 \mathbf{e}_3$</td>
</tr>
<tr>
<td>α_{12}</td>
<td>$z \alpha_{11} - x^3 \alpha_2 = S(\alpha_{11}, \alpha_2)$</td>
<td>$x^3 zt^3$</td>
<td>$x^3 \mathbf{z e}_3$</td>
</tr>
<tr>
<td>α_{13}</td>
<td>$y\alpha_{10} - x^3 \alpha_1 = S(\alpha_{10}, \alpha_1)$</td>
<td>$x^5 zt$</td>
<td>$x^2 y^2 \mathbf{e}_3$</td>
</tr>
<tr>
<td>α_{14}</td>
<td>$x\alpha_{12} - \alpha_9 = S(\alpha_{12}, \alpha_9)$</td>
<td>$x^4 t^4$</td>
<td>$x^4 \mathbf{z e}_3$</td>
</tr>
</tbody>
</table>

[Ga12b] V. Galkin. Simple signature-based Groebner basis algorithm

