Exploiting algebraic structures to solve polynomial systems of equations

Brice Boyer, Christian Eder, Jean-Charles Faugère, Fayssal Martani, John Perry and Bjarke Hammersholt Roune

Séminaire de théorie des codes et cryptographie à Neuchâtel (et à Zürich)

May 18, 2015
Conventions

- $\mathcal{R} = \mathcal{K}[x_1, \ldots, x_n]$, \mathcal{K} field, $<$ well-ordering on $\text{Mon}(x_1, \ldots, x_n)$

- $f \in \mathcal{R}$ can be represented in a unique way by $<$. \Rightarrow Definitions as $\text{lc}(f)$, $\text{lm}(f)$, and $\text{lt}(f)$ make sense.

- An ideal I in \mathcal{R} is an additive subgroup of \mathcal{R} such that for $f \in I$, $g \in \mathcal{R}$ it holds that $fg \in I$.

- $G = \{g_1, \ldots, g_s\} \subset \mathcal{R}$ is a Gröbner basis for $I = \langle f_1, \ldots, f_m \rangle$ w.r.t. $<$

$$
\iff
G \subset I \text{ and } L_<(G) = L_<(I)
$$
1. A lot of crypto systems boil down to find a solution (a finite number of solutions) of a system of polynomial equations.
1. A lot of crypto systems boil down to find a solution (a finite number of solutions) of a system of polynomial equations.

2. For example, multivariate crypto systems like (Multi-)HFE(+-), UOV or Rainbow

3. Minrank \((n, k, r)\) problem: Given matrices \(M_0, \ldots, M_k \in \mathbb{M}_{n \times n}(\mathbb{K})\), find (if possible) \((\lambda_1, \ldots, \lambda_k) \in \mathbb{K}^k\) such that

\[
\text{rank} \left(\sum_{i=1}^{k} \lambda_i M_i - M_0 \right) \leq r.
\]
Why?

1. A lot of crypto systems boil down to find a solution (a finite number of solutions) of a system of polynomial equations.

2. For example, multivariate crypto systems like (Multi-)HFE(+-), UOV or Rainbow

3. Minrank \((n, k, r)\) problem: Given matrices \(M_0, \ldots, M_k \in M_{n \times n}(k)\), find (if possible) \((\lambda_1, \ldots, \lambda_k) \in k^n\) such that

\[
\text{rank} \left(\sum_{i=1}^{k} \lambda_i M_i - M_0 \right) \leq r.
\]

Solving polynomial equations is important
Gröbner Bases are cool!
Buchberger’s criterion

S-polynomials
Let $f \neq 0, g \neq 0 \in \mathbb{R}$ and let $\lambda = \text{lcm}(\text{lt}(f), \text{lt}(g))$ be the least common multiple of $\text{lt}(f)$ and $\text{lt}(g)$. The **S-polynomial** between f and g is given by

$$\text{spol}(f, g) := \frac{\lambda}{\text{lt}(f)} f - \frac{\lambda}{\text{lt}(g)} g.$$
Buchberger’s criterion

S-polynomials
Let \(f \neq 0, g \neq 0 \in \mathbb{R} \) and let \(\lambda = \text{lcm} (\text{lt}(f), \text{lt}(g)) \) be the least common multiple of \(\text{lt}(f) \) and \(\text{lt}(g) \). The **S-polynomial** between \(f \) and \(g \) is given by

\[
\text{spol}(f, g) := \frac{\lambda}{\text{lt}(f)} f - \frac{\lambda}{\text{lt}(g)} g.
\]

Buchberger’s criterion [1]
Let \(I = \langle f_1, \ldots, f_m \rangle \) be an ideal in \(\mathbb{R} \). A finite subset \(G \subset \mathbb{R} \) is a **Gröbner basis** for \(I \) if \(G \subset I \) and for all \(f, g \in G \) : \(\text{spol}(f, g) \xrightarrow{G} 0. \)
Buchberger’s algorithm

Input: Ideal \(I = \langle f_1, \ldots, f_m \rangle \)
Output: Gröbner basis \(G \) for \(I \)

1. \(G \leftarrow \emptyset \)
2. \(G \leftarrow G \cup \{ f_i \} \) for all \(i \in \{1, \ldots, m \} \)
3. Set \(P \leftarrow \{ \text{spol} (f_i, f_j) \mid f_i, f_j \in G, i > j \} \)
Buchberger’s algorithm

Input: Ideal \(I = \langle f_1, \ldots, f_m \rangle \)

Output: Gröbner basis \(G \) for \(I \)

1. \(G \leftarrow \emptyset \)
2. \(G \leftarrow G \cup \{ f_i \} \) for all \(i \in \{1, \ldots, m \} \)
3. Set \(P \leftarrow \{ \text{spol} (f_i, f_j) \mid f_i, f_j \in G, i > j \} \)
4. Choose \(p \in P, P \leftarrow P \setminus \{ p \} \)
Buchberger’s algorithm

Input: Ideal $I = \langle f_1, \ldots, f_m \rangle$

Output: Gröbner basis G for I

1. $G \leftarrow \emptyset$

2. $G \leftarrow G \cup \{f_i\}$ for all $i \in \{1, \ldots, m\}$

3. Set $P \leftarrow \{\text{spol}(f_i, f_j) \mid f_i, f_j \in G, i > j\}$

4. Choose $p \in P$, $P \leftarrow P \setminus \{p\}$

 (a) If $p \xrightarrow{G} 0$ ➤ **no new information**

 Go on with the next element in P.

 (b) If $p \xrightarrow{G} q \neq 0$ ➤ **new information**

 Build new S-pair with q and add them to P.

 Add q to G.

 Go on with the next element in P.

5. When $P = \emptyset$ we are done and G is a Gröbner basis for I.
How to improve computations?

- Modular computations $\mathbb{Q} \rightarrow$ several \mathbb{Z}_{p_i} computations and CRT
- Predict zero reductions fast checks \rightarrow fewer useless reductions
- Sort pair set selection of pairs, degree drops, mutants, etc.
- Homogenization d-Gröbner bases, sugar degree
- Change of order transformation to different monomial order
- Linear Algebra (specialized) Gaussian Elimination
- Sparse Gröbner Bases exploitation of sparsity, Newton polygons
- ...
How to improve computations?

- **Predict zero reductions** fast checks \rightarrow fewer useless reductions

- **Linear Algebra** (specialized) Gaussian Elimination
● Predicting zero reductions

● Fast linear algebra for computing Gröbner bases
How to detect zero reductions in advance?

Let $\langle g_1, g_2 \rangle \in \mathbb{Q}[x, y, z]$ and let $<$ denote the reverse lexicographical ordering. Let

$$g_1 = xy - z^2, \quad g_2 = y^2 - z^2$$
How to detect zero reductions in advance?

Let \(I = \langle g_1, g_2 \rangle \in \mathbb{Q}[x, y, z] \) and let \(< \) denote the reverse lexicographical ordering. Let

\[
\begin{align*}
g_1 &= xy - z^2, \\
g_2 &= y^2 - z^2
\end{align*}
\]

\[
\text{spol}(g_2, g_1) = xg_2 - yg_1 = xy^2 - xz^2 - xy^2 + yz^2 = -xz^2 + yz^2.
\]

\[
\implies g_3 = xz^2 - yz^2.
\]
How to detect zero reductions in advance?

Let \(l = \langle g_1, g_2 \rangle \in \mathbb{Q}[x, y, z] \) and let \(<\) denote the reverse lexicographical ordering. Let

\[
g_1 = xy - z^2, \quad g_2 = y^2 - z^2
\]

\[
\text{spol}(g_2, g_1) = xg_2 - yg_1 = xy^2 - xz^2 - xy^2 + yz^2 = -xz^2 + yz^2.
\]

\[
\implies g_3 = xz^2 - yz^2.
\]

\[
\text{spol}(g_3, g_1) = xyz^2 - y^2z^2 - xyz^2 + z^4 = -y^2z^2 + z^4.
\]
How to detect zero reductions in advance?

Let \(I = \langle g_1, g_2 \rangle \in \mathbb{Q}[x, y, z] \) and let \(<\) denote the reverse lexicographical ordering. Let

\[
g_1 = xy - z^2, \quad g_2 = y^2 - z^2
\]

Then

\[
\text{spol}(g_2, g_1) = xg_2 - yg_1 = xy^2 - xz^2 - xy^2 + yz^2 = -xz^2 + yz^2.
\]

\[\longrightarrow g_3 = xz^2 - yz^2.\]

Then

\[
\text{spol}(g_3, g_1) = xyz^2 - y^2 z^2 - xyz^2 + z^4 = -y^2 z^2 + z^4.
\]

We can reduce further using \(z^2 g_2 \):

\[-y^2 z^2 + z^4 + y^2 z^2 - z^4 = 0.\]
How to detect zero reductions in advance?

Can we see something? How are the generators of the S-polynomials related to each other?
How to detect zero reductions in advance?

Can we see something? How are the generators of the S-polynomials related to each other?

\[
\text{spol}(g_3, g_2) = y^2 (xz^2 - yz^2) - xz^2 (y^2 - z^2)
\]
\[
= \text{lt}(g_2)g_3 - \text{lt}(g_3)g_2
\]
\[
= \text{lt}(g_2)\text{lot}(g_3) - \text{lt}(g_3)\text{lot}(g_2)
\]
How to detect zero reductions in advance?

Can we see something? How are the generators of the S-polynomials related to each other?

\[\text{spol}(g_3, g_2) = y^2 (xz^2 - yz^2) - xz^2 (y^2 - z^2) \]

\[= \text{lt}(g_2) g_3 - \text{lt}(g_3) g_2 \]

\[= \text{lt}(g_2) \text{lot}(g_3) - \text{lt}(g_3) \text{lot}(g_2) \]

For all \(u \in \text{support}(\text{lot}(g_3)) \) we can reduce with \(u g_2 \):

\[\Rightarrow \text{lt}(g_2) \text{lot}(g_3) - g_2 \text{lot}(g_3) - \text{lt}(g_3) \text{lot}(g_2) \]

\[= - \text{lot}(g_2) \text{lot}(g_3) - \text{lt}(g_3) \text{lot}(g_2) \]

\[= - g_3 \text{lot}(g_2). \]
How to detect zero reductions in advance?

Can we see something? How are the generators of the S-polynomials related to each other?

$$\text{spol}(g_3, g_2) = y^2 (xz^2 - yz^2) - xz^2 (y^2 - z^2)$$

$$= \text{lt}(g_2)g_3 - \text{lt}(g_3)g_2$$

$$= \text{lt}(g_2)\text{lot}(g_3) - \text{lt}(g_3)\text{lot}(g_2)$$

For all $$u \in \text{support}(\text{lot}(g_3))$$ we can reduce with $$ug_2$$:

$$\Rightarrow \text{lt}(g_2)\text{lot}(g_3) - g_2\text{lot}(g_3) - \text{lt}(g_3)\text{lot}(g_2)$$

$$= - \text{lot}(g_2)\text{lot}(g_3) - \text{lt}(g_3)\text{lot}(g_2)$$

$$= - g_3\text{lot}(g_2).$$

So we can reduce this to zero by $$vg_3$$ for all $$v \in \text{support}(\text{lot}(g_2)).$$
Buchberger’s criteria

Product criterion [2]

If $\text{lcm}(\text{lt}(f), \text{lt}(g)) = \text{lt}(f) \text{lt}(g)$ then $\text{spol}(f, g) \xrightarrow{\{f, g\}} 0$.
Buchberger’s criteria

Product criterion [2]

If \(\text{lcm} (\text{lt}(f), \text{lt}(g)) = \text{lt}(f) \text{lt}(g) \) then \(\text{spol}(f, g) \xrightarrow{\{f,g\}} 0. \)

Couldn’t we remove \(\text{spol}(g_3, g_2) \) in a different way?
Buchberger’s criteria

Product criterion [2]

If \(\text{lcm}(\text{lt}(f), \text{lt}(g)) = \text{lt}(f) \text{lt}(g) \) then \(\text{spol}(f, g) \rightarrow 0 \).

Couldn’t we remove \(\text{spol}(g_3, g_2) \) in a different way?

\[
\text{lt}(g_1) = xy \mid xy^2 z^2 = \text{lcm}(\text{lt}(g_3), \text{lt}(g_2))
\]
Buchberger’s criteria

Product criterion [2]

If \(\text{lcm}(\text{lt}(f), \text{lt}(g)) = \text{lt}(f) \text{lt}(g) \) then \(\text{spol}(f, g) \xrightarrow{\{f,g\}} 0. \)

Couldn’t we remove \(\text{spol}(g_3, g_2) \) in a different way?

\[
\text{lt}(g_1) = xy \mid xy^2 z^2 = \text{lcm}(\text{lt}(g_3), \text{lt}(g_2))
\]

\[
\implies \text{We can rewrite } \text{spol}(g_3, g_2):
\]

\[
\text{spol}(g_3, g_2) = y \text{ spol}(g_3, g_1) - z^2 \text{ spol}(g_2, g_1) = y(yg_3 - z^2 g_1) - z^2 (xg_2 - yg_1)
\]

\[
\xrightarrow{G \leftarrow 0} \quad \xrightarrow{G \leftarrow -g_3}
\]
Buchberger’s criteria

Product criterion [2]

If $\text{lcm}(\text{lt}(f), \text{lt}(g)) = \text{lt}(f) \text{lt}(g)$ then $\text{spol}(f, g) \xrightarrow{\{f, g\}} 0$.

Could we remove $\text{spol}(g_3, g_2)$ in a different way?

$$\text{lt}(g_1) = xy \mid xy^2 z^2 = \text{lcm}(\text{lt}(g_3), \text{lt}(g_2))$$

$$\implies \text{We can rewrite } \text{spol}(g_3, g_2):$$

$$\text{spol}(g_3, g_2) = y \text{spol}(g_3, g_1) - z^2 \text{spol}(g_2, g_1) = y(yg_3 - z^2 g_1) - z^2(xg_2 - yg_1)$$

Once we have reduced $\text{spol}(g_2, g_1)$ and $\text{spol}(g_3, g_1)$ we do not need to reduce $\text{spol}(g_3, g_2)$.
Buchberger’s criteria

Chain criterion [3]
Let \(f, g, h \in R, G \subset R \) finite. If

1. \(\text{lt}(h) \mid \text{lcm}(\text{lt}(f), \text{lt}(g)) \), and

2. \(\text{spol}(f, h) \) and \(\text{spol}(h, g) \) have a standard representation w.r.t. \(G \) respectively,

then \(\text{spol}(f, g) \) has a standard representation w.r.t. \(G \).
Buchberger’s criteria

Chain criterion [3]
Let \(f, g, h \in R \), \(G \subset R \) finite. If

1. \(\text{lcm}(\text{lt}(f), \text{lt}(g)) \mid \text{lt}(h) \), and
2. \(\text{spol}(f, h) \) and \(\text{spol}(h, g) \) have a standard representation w.r.t. \(G \) respectively,

then \(\text{spol}(f, g) \) has a standard representation w.r.t. \(G \).

Note
Do not remove too much information! If \(\lambda = 1 \) and

\[
\text{spol}(f, g) = \lambda \text{spol}(f, h) + \sigma \text{spol}(h, g),
\]

then we can remove \(\text{spol}(f, g) \) or \(\text{spol}(f, h) \) but not both!
Buchberger’s criteria

Chain criterion [3]
Let $f, g, h \in \mathbb{R}, G \subset \mathbb{R}$ finite. If

1. $\text{lt}(h) \mid \text{lcm}(\text{lt}(f), \text{lt}(g))$, and

2. $\text{spol}(f, h)$ and $\text{spol}(h, g)$ have a standard representation w.r.t. G respectively,
then $\text{spol}(f, g)$ has a standard representation w.r.t. G.

Note
Do not remove too much information! If $\lambda = 1$ and

$$\text{spol}(f, g) = \lambda \text{spol}(f, h) + \sigma \text{spol}(h, g),$$

then we can remove $\text{spol}(f, g)$ or $\text{spol}(f, h)$ but not both!

Combine both criteria using Gebauer-Möller’s installation [8].
Can we do even better?

In our example we still need to consider

$$\text{spol}(g_3, g_1) \xrightarrow{G} 0.$$

How to get rid of this useless computation?
Can we do even better?

In our example we still need to consider

$$\text{spol}(g_3, g_1) \xrightarrow{G} 0.$$

How to get rid of this useless computation?

Use more structure of $I \rightarrow \text{Signatures}$
Let \(I = \langle f_1, \ldots, f_m \rangle \subset R \).

Idea: Give each \(f \in I \) a bit more structure:
Let $I = \langle f_1, \ldots, f_m \rangle \subset \mathcal{R}$.

Idea: Give each $f \in I$ a bit more structure:

1. Let \mathcal{R}^m be generated by e_1, \ldots, e_m and let \prec be a compatible monomial order on the monomials of \mathcal{R}^m.
Let $I = \langle f_1, \ldots, f_m \rangle \subset \mathcal{R}$.

Idea: Give each $f \in I$ a bit more structure:

1. Let \mathcal{R}^m be generated by e_1, \ldots, e_m and let \prec be a compatible monomial order on the monomials of \mathcal{R}^m.

2. Let $\alpha \mapsto \overline{\alpha} : \mathcal{R}^m \rightarrow \mathcal{R}$ such that $\overline{e}_i = f_i$ for all i.
Signatures

Let \(l = \langle f_1, \ldots, f_m \rangle \subset \mathcal{R} \).

Idea: Give each \(f \in l \) a bit more structure:

1. Let \(\mathcal{R}^m \) be generated by \(e_1, \ldots, e_m \) and let \(\prec \) be a compatible monomial order on the monomials of \(\mathcal{R}^m \).

2. Let \(\alpha \mapsto \overline{\alpha} : \mathcal{R}^m \rightarrow \mathcal{R} \) such that \(e_i = f_i \) for all \(i \).

3. Each \(f \in l \) can be represented via some \(\alpha \in \mathcal{R}^m : f = \overline{\alpha} \).
Let $l = \langle f_1, \ldots, f_m \rangle \subset \mathcal{R}$.

Idea: Give each $f \in l$ a bit more structure:

1. Let \mathcal{R}^m be generated by e_1, \ldots, e_m and let \prec be a compatible monomial order on the monomials of \mathcal{R}^m.

2. Let $\alpha \mapsto \overline{\alpha} : \mathcal{R}^m \to \mathcal{R}$ such that $\overline{e_i} = f_i$ for all i.

3. Each $f \in l$ can be represented via some $\alpha \in \mathcal{R}^m$: $f = \overline{\alpha}$

4. A **signature** of f is given by $s(f) = \text{lt}_{\prec}(\alpha)$ where $f = \overline{\alpha}$.
Signatures

Let \(I = \langle f_1, \ldots, f_m \rangle \subset R \).

Idea: Give each \(f \in I \) a bit more structure:

1. Let \(R^m \) be generated by \(e_1, \ldots, e_m \) and let \(\prec \) be a compatible monomial order on the monomials of \(R^m \).

2. Let \(\alpha \mapsto \overrightarrow{\alpha} : R^m \to R \) such that \(e_i = f_i \) for all \(i \).

3. Each \(f \in I \) can be represented via some \(\alpha \in R^m \): \(f = \alpha \).

4. A **signature** of \(f \) is given by \(s(f) = \text{lt}_\prec(\alpha) \) where \(f = \overrightarrow{\alpha} \).

5. An element \(\alpha \in R^m \) such that \(\overrightarrow{\alpha} = 0 \) is called a **syzygy**.
Our example again – with signatures and \(\rightsimeq_{\text{pot}} \)

\[
\begin{align*}
 g_1 &= xy - z^2, \quad s(g_1) = e_1, \\
 g_2 &= y^2 - z^2, \quad s(g_2) = e_2.
\end{align*}
\]
Our example again – with signatures and \prec_{pot}

\[g_1 = xy - z^2, \quad s(g_1) = e_1, \]
\[g_2 = y^2 - z^2, \quad s(g_2) = e_2. \]

\[g_3 = \text{spol}(g_2, g_1) = xg_2 - yg_1 \]
\[\Rightarrow s(g_3) = x s(g_2) = xe_2. \]
Our example again – with signatures and \prec_{pot}

\[g_1 = xy - z^2, \ s(g_1) = e_1, \]
\[g_2 = y^2 - z^2, \ s(g_2) = e_2. \]

\[g_3 = \text{spol}(g_2, g_1) = xg_2 - yg_1 \]
\[\Rightarrow s(g_3) = xs(g_2) = xe_2. \]

\[\text{spol}(g_3, g_1) = yg_3 - z^2 g_1 \]
\[\Rightarrow s(\text{spol}(g_3, g_1)) = ys(g_3) = xye_2. \]
Our example again – with signatures and \prec_{pot}

$g_1 = xy - z^2$, $s(g_1) = e_1$,

$g_2 = y^2 - z^2$, $s(g_2) = e_2$.

$g_3 = \text{spol}(g_2, g_1) = xg_2 - yg_1$

$\Rightarrow s(g_3) = xs(g_2) = xe_2$.

$\text{spol}(g_3, g_1) = yg_3 - z^2 g_1$

$\Rightarrow s(\text{spol}(g_3, g_1)) = ys(g_3) = xye_2$.

Note that $s(\text{spol}(g_3, g_1)) = xye_2$ and $\text{lm}(g_1) = xy$.
Think in the module

\[\alpha \in \mathbb{R}^m \rightarrow \text{polynomial } \overline{\alpha} \text{ with } \text{lt} (\overline{\alpha}), \text{ signature } s(\alpha) = \text{lt} (\alpha) \]
Think in the module

\[\alpha \in \mathbb{R}^m \longrightarrow \text{polynomial } \overline{\alpha} \text{ with } \text{lt}(\overline{\alpha}), \text{signature } \sigma(\alpha) = \text{lt}(\alpha) \]

S-pairs/S-polynomials:

\[\text{spol}(\overline{\alpha}, \overline{\beta}) = a\overline{\alpha} - b\overline{\beta} \quad \Rightarrow \quad \text{spair}(\alpha, \beta) = a\alpha - b\beta \]
Think in the module

\(\alpha \in \mathbb{R}^m \rightarrow \) polynomial \(\overline{\alpha} \) with \(\text{lt} (\overline{\alpha}) \), signature \(s(\alpha) = \text{lt}(\alpha) \)

S-pairs/S-polynomials:

\[
\text{spol} (\overline{\alpha}, \overline{\beta}) = a\overline{\alpha} - b\overline{\beta} \quad \rightarrow \quad \text{spair} (\alpha, \beta) = a\alpha - b\beta
\]

\(s \)-reductions:

\[
\overline{\gamma} - d\overline{\delta} \quad \rightarrow \quad \gamma - d\delta
\]
Think in the module

\[\alpha \in \mathbb{R}^m \implies \text{polynomial } \overline{\alpha} \text{ with } \text{lt}(\overline{\alpha}), \text{signature } s(\alpha) = \text{lt}(\alpha) \]

S-pairs/S-polynomials:

\[\text{spol}(\overline{\alpha}, \overline{\beta}) = a\overline{\alpha} - b\overline{\beta} \implies \text{spair}(\alpha, \beta) = a\alpha - b\beta \]

\(s\)-reductions:

\[\overline{\gamma} - d\overline{\delta} \implies \gamma - d\delta \]

Remark
In the following we need one detail from signature-based Gröbner Basis computations:

We pick from \(P \) by increasing signature.
Signature-based criteria

\[s(\alpha) = s(\beta) \implies \text{Compute 1, remove 1.} \]
Signature-based criteria

\[s(\alpha) = s(\beta) \implies \text{Compute 1, remove 1.} \]

Sketch of proof

1. \(s(\alpha - \beta) < s(\alpha), s(\beta) \).
2. All S-pairs are handled by increasing signature.
 \(\Rightarrow \) All relations \(< s(\alpha) \) are known:
 \[\alpha = \beta + \text{elements of smaller signature} \]
Signature-based criteria

S-pairs in signature T
Signature-based criteria

S-pairs in signature T

What are all possible configurations to reach signature T?
Signature-based criteria

S-pairs in signature T

$\mathcal{R}_T = \{ a\alpha \mid \alpha \text{ handled by the algorithm and } s(a\alpha) = T \}$

What are all possible configurations to reach signature T?
Signature-based criteria

What are all possible configurations to reach signature T?

Define an order on R_T and choose the maximal element.

$R_T = \{ a\alpha \mid \alpha \text{ handled by the algorithm and } s(a\alpha) = T \}$
Special cases

\[\mathcal{R}_T = \left\{ a\alpha \mid \alpha \text{ handled by the algorithm and } s(a\alpha) = T \right\} \]
Special cases

\[\mathcal{R}_T = \{ a\alpha \mid \alpha \text{ handled by the algorithm and } s(a\alpha) = T \} \]

Choose \(b\beta \) to be an element of \(\mathcal{R}_T \) maximal w.r.t. an order \(\leq \).
Special cases

\[\mathcal{R}_T = \left\{ a \alpha \mid \alpha \text{ handled by the algorithm and } s(a \alpha) = T \right\} \]

Choose $b\beta$ to be an element of \mathcal{R}_T maximal w.r.t. an order \preceq.

1. **If $b\beta$ is a syzygy** \implies Go on to next signature.
Special cases

\[\mathcal{R}_T = \{ a\alpha \mid \alpha \text{ handled by the algorithm and } s(a\alpha) = T \} \]

Choose \(b\beta \) to be an element of \(\mathcal{R}_T \) maximal w.r.t. an order \(\preceq \).

1. If \(b\beta \) is a syzygy \(\implies \) Go on to next signature.
2. If \(b\beta \) is not part of an S-pair \(\implies \) Go on to next signature.
Special cases

\[\mathcal{R}_T = \left\{ a\alpha \mid \alpha \text{ handled by the algorithm and } s(a\alpha) = T \right\} \]

Choose \(b\beta \) to be an element of \(\mathcal{R}_T \) maximal w.r.t. an order \(\sqsubseteq \).

1. If \(b\beta \) is a syzygy \(\implies \) Go on to next signature.
2. If \(b\beta \) is not part of an S-pair \(\implies \) Go on to next signature.

Revisiting our example with \(\prec_{\text{pot}} \)

\[s(\text{spol}(g_3, g_1)) = xye_2 \]

\[\begin{aligned} g_1 &= xy - z^2 \\ g_2 &= y^2 - z^2 \end{aligned} \]

\[\Rightarrow \text{psyz}(g_2, g_1) = g_1 e_2 - g_2 e_1 = xye_2 + \ldots \]
zero reductions (Singular-4-0-0, \mathbb{F}_{32003})

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>STD</th>
<th>SBA \prec_{pot}</th>
<th>SBA \prec_{d-pot}</th>
<th>SBA \prec_{lt}</th>
</tr>
</thead>
<tbody>
<tr>
<td>cyclic-8</td>
<td>4,284</td>
<td>243</td>
<td>243</td>
<td>671</td>
</tr>
<tr>
<td>cyclic-8-h</td>
<td>5,843</td>
<td>243</td>
<td>243</td>
<td>671</td>
</tr>
<tr>
<td>eco-11</td>
<td>3,476</td>
<td>0</td>
<td>749</td>
<td>749</td>
</tr>
<tr>
<td>eco-11-h</td>
<td>5,429</td>
<td>502</td>
<td>502</td>
<td>749</td>
</tr>
<tr>
<td>katsura-11</td>
<td>3,933</td>
<td>0</td>
<td>0</td>
<td>348</td>
</tr>
<tr>
<td>katsura-11-h</td>
<td>3,933</td>
<td>0</td>
<td>0</td>
<td>348</td>
</tr>
<tr>
<td>noon-9</td>
<td>25,508</td>
<td>0</td>
<td>0</td>
<td>682</td>
</tr>
<tr>
<td>noon-9-h</td>
<td>25,508</td>
<td>0</td>
<td>0</td>
<td>682</td>
</tr>
<tr>
<td>Random(11,2,2)</td>
<td>6,292</td>
<td>0</td>
<td>0</td>
<td>590</td>
</tr>
<tr>
<td>HRandom(11,2,2)</td>
<td>6,292</td>
<td>0</td>
<td>0</td>
<td>590</td>
</tr>
<tr>
<td>Random(12,2,2)</td>
<td>13,576</td>
<td>0</td>
<td>0</td>
<td>1,083</td>
</tr>
<tr>
<td>HRandom(12,2,2)</td>
<td>13,576</td>
<td>0</td>
<td>0</td>
<td>1,083</td>
</tr>
</tbody>
</table>
Time in seconds (Singular-4-0-0, \mathbb{F}_{32003})

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>STD</th>
<th>SBA \prec_{pot}</th>
<th>SBA $\prec_{d\text{-pot}}$</th>
<th>SBA \prec_{lt}</th>
</tr>
</thead>
<tbody>
<tr>
<td>cyclic-8</td>
<td>32.480</td>
<td>44.310</td>
<td>100.780</td>
<td>31.120</td>
</tr>
<tr>
<td>cyclic-8-h</td>
<td>38.300</td>
<td>35.770</td>
<td>98.440</td>
<td>32.640</td>
</tr>
<tr>
<td>eco-11</td>
<td>28.450</td>
<td>3.450</td>
<td>27.360</td>
<td>13.270</td>
</tr>
<tr>
<td>eco-11-h</td>
<td>20.630</td>
<td>11.600</td>
<td>14.840</td>
<td>7.960</td>
</tr>
<tr>
<td>katsura-11</td>
<td>54.780</td>
<td>35.720</td>
<td>31.010</td>
<td>11.790</td>
</tr>
<tr>
<td>katsura-11-h</td>
<td>51.260</td>
<td>34.080</td>
<td>32.590</td>
<td>17.230</td>
</tr>
<tr>
<td>noon-9</td>
<td>29.730</td>
<td>12.940</td>
<td>14.620</td>
<td>15.220</td>
</tr>
<tr>
<td>noon-9-h</td>
<td>34.410</td>
<td>17.850</td>
<td>20.090</td>
<td>20.510</td>
</tr>
<tr>
<td>Random(11,2,2)</td>
<td>267.810</td>
<td>77.430</td>
<td>130.400</td>
<td>28.640</td>
</tr>
<tr>
<td>HRandom(11,2,2)</td>
<td>22.970</td>
<td>14.060</td>
<td>39.320</td>
<td>3.540</td>
</tr>
<tr>
<td>Random(12,2,2)</td>
<td>2,069.890</td>
<td>537.340</td>
<td>1,062.390</td>
<td>176.920</td>
</tr>
<tr>
<td>HRandom(12,2,2)</td>
<td>172.910</td>
<td>112.420</td>
<td>331.680</td>
<td>22.060</td>
</tr>
</tbody>
</table>
Predicting zero reductions

Fast linear algebra for computing Gröbner bases
Faugère’s F4 algorithm

Input: Ideal \(I = \langle f_1, \ldots, f_m \rangle \)
Output: Gröbner basis \(G \) for \(I \)

1. \(G \leftarrow \emptyset \)
2. \(G \leftarrow G \cup \{ f_i \} \) for all \(i \in \{1, \ldots, m\} \)
3. Set \(P \leftarrow \{(af, bg) \mid f, g \in G\} \)
4. \(d \leftarrow 0 \)
5. while \(P \neq \emptyset \):
 ▶ If \(\text{lt}(h) \notin L(G) \) (all other \(h \) are "useless"):
 \(\leftarrow \leftarrow \emptyset \)
 \(\leftarrow \leftarrow G \cup \{ h \} \)
Faugère’s F4 algorithm

Input: Ideal \(I = \langle f_1, \ldots, f_m \rangle \)

Output: Gröbner basis \(G \) for \(I \)

1. \(G \leftarrow \emptyset \)
2. \(G \leftarrow G \cup \{ f_i \} \) for all \(i \in \{1, \ldots, m\} \)
3. Set \(P \leftarrow \{ (af, bg) \mid f, g \in G \} \)
4. \(d \leftarrow 0 \)
5. while \(P \neq \emptyset \):
 (a) \(d \leftarrow d + 1 \)
 (b) \(P_d \leftarrow \textbf{Select}(P) \), \(P \leftarrow P \setminus P_d \)
 (c) \(L_d \leftarrow \{ af, bg \mid (af, bg) \in P_d \} \)
 (d) \(L_d \leftarrow \textbf{Symbolic Preprocessing}(L_d, G) \)
 (e) \(F_d \leftarrow \textbf{Reduction}(L_d, G) \)
 (f) for \(h \in F_d \):
 ▶ If \(\text{lt}(h) \notin L(G) \) (all other \(h \) are “useless”):
 ▶ \(P \leftarrow P \cup \{ \text{new pairs with } h \} \)
 ▶ \(G \leftarrow G \cup \{ h \} \)
6. Return \(G \)
Differences to Buchberger

1. **Select a subset** P_d of P, not only one element.
2. Do a **symbolic preprocessing**:
 - Search and store reducers, but do not reduce.
3. Do a **full reduction of** P_d at once:
 - Reduce a subset of \mathcal{R} by a subset of \mathcal{R}
Differences to Buchberger

1. **Select a subset** P_d of P, not only one element.

2. Do a **symbolic preprocessing**:
 Search and store reducers, but do not reduce.

3. Do a **full reduction of** P_d at once:
 Reduce a subset of R by a subset of R

If **Select** (P) selects only one pair F4 is just Buchberger’s algorithm.
Usually one chooses the normal selection strategy,
i.e. all pairs of lowest degree.
Symbolic preprocessing

Input: L, G finite subsets of \mathbb{R}
Output: a finite subset of \mathbb{R}

1. $F \leftarrow L$
2. $D \leftarrow L(F)$ (S-pairs already reduce lead terms)
3. while $T(F) \neq D$:
 (a) Choose $m \in T(F) \setminus D$, $D \leftarrow D \cup \{m\}$.
 (b) If $m \in L(G) \Rightarrow \exists g \in G$ and $\lambda \in \mathbb{R}$ such that $\lambda \text{lt}(g) = m$
 $\Rightarrow F \leftarrow F \cup \{\lambda g\}$
4. Return F
Symbolic preprocessing

Input: \(L, G \) finite subsets of \(\mathbb{R} \)

Output: a finite subset of \(\mathbb{R} \)

1. \(F \leftarrow L \)
2. \(D \leftarrow L(F) \) \((S\text{-pairs already reduce lead terms})\)
3. while \(T(F) \neq D \):
 (a) Choose \(m \in T(F) \setminus D \), \(D \leftarrow D \cup \{m\} \).
 (b) If \(m \in L(G) \Rightarrow \exists g \in G \) and \(\lambda \in \mathbb{R} \) such that \(\lambda \text{lt}(g) = m \)
 \(\triangleright F \leftarrow F \cup \{\lambda g\} \)
4. Return \(F \)

We optimize this soon!
Reduction

Input: L finite subsets of \mathbb{R}
Output: a finite subset of \mathbb{R}

1. $M \leftarrow$ Macaulay matrix of L
2. $M \leftarrow$ Gaussian Elimination of M (Linear algebra)
3. $F \leftarrow$ polynomials from rows of M
4. Return F
Input: L finite subsets of \mathbb{R}
Output: a finite subset of \mathbb{R}

1. $M \leftarrow$ Macaulay matrix of L
2. $M \leftarrow$ Gaussian Elimination of M (Linear algebra)
3. $F \leftarrow$ polynomials from rows of M
4. Return F

Macaulay matrix
- columns \triangleright monomials (sorted by monomial order \prec)
- rows \triangleright coefficients of polynomials in L
Example: Cyclic-4

\[R = \mathbb{Q}[a, b, c, d], \quad < \text{denotes DRL and we use the normal selection strategy for} \ Select(P). \ i = \langle f_1, \ldots, f_4 \rangle, \text{where} \]

\begin{align*}
 f_1 &= abcd - 1, \\
 f_2 &= abc + abd + acd + bcd, \\
 f_3 &= ab + bc + ad + cd, \\
 f_4 &= a + b + c + d.
\end{align*}
\(\mathcal{R} = \mathbb{Q}[a, b, c, d] \), \(< \) denotes DRL and we use the normal selection strategy for \textbf{Select}(P). \(l = \langle f_1, \ldots, f_4 \rangle \), where

\[
\begin{align*}
 f_1 &= abcd - 1, \\
 f_2 &= abc + abd + acd + bcd, \\
 f_3 &= ab + bc + ad + cd, \\
 f_4 &= a + b + c + d.
\end{align*}
\]

We start with \(G = \{ f_4 \} \) and \(P_1 = \{(f_3, bf_4)\} \), thus \(L_1 = \{ f_3, bf_4 \} \).
Example: Cyclic-4

\(\mathcal{R} = \mathbb{Q}[a, b, c, d], \) denotes DRL and we use the normal selection strategy for \textbf{Select}(P). \(I = \langle f_1, \ldots, f_4 \rangle, \) where

\[
\begin{align*}
 f_1 &= abcd - 1, \\
 f_2 &= abc + abd + acd + bcd, \\
 f_3 &= ab + bc + ad + cd, \\
 f_4 &= a + b + c + d.
\end{align*}
\]

We start with \(G = \{ f_4 \} \) and \(P_1 = \{ (f_3, bf_4) \} \), thus \(L_1 = \{ f_3, bf_4 \} \).

Let us do symbolic preprocessing:

\[
T(L_1) = \{ ab, b^2, bc, ad, bd, cd \}
\]
\[
L_1 = \{ f_3, bf_4 \}
\]
Example: Cyclic-4

\[\mathcal{R} = \mathbb{Q}[a, b, c, d], < \text{ denotes DRL and we use the normal selection strategy for } \textbf{Select}(P). \ i = \langle f_1, \ldots, f_4 \rangle, \text{ where} \]

\[
\begin{align*}
 f_1 &= abcd - 1, \\
 f_2 &= abc + abd + acd + bcd, \\
 f_3 &= ab + bc + ad + cd, \\
 f_4 &= a + b + c + d.
\end{align*}
\]

We start with \(G = \{ f_4 \} \) and \(P_1 = \{ (f_3, bf_4) \} \), thus \(L_1 = \{ f_3, bf_4 \} \).

Let us do symbolic preprocessing:

\[
\begin{align*}
 T(L_1) &= \{ ab, b^2, bc, ad, bd, cd \} \\
 L_1 &= \{ f_3, bf_4 \}
\end{align*}
\]

\(b^2 \notin L(G) \),
Example: Cyclic-4

\(\mathcal{R} = \mathbb{Q}[a, b, c, d] \), \(\prec \) denotes DRL and we use the normal selection strategy for \textbf{Select}(\(P \)). \(I = \langle f_1, \ldots, f_4 \rangle \), where

\[
\begin{align*}
f_1 &= abcd - 1, \\
f_2 &= abc + abd + acd + bcd, \\
f_3 &= ab + bc + ad + cd, \\
f_4 &= a + b + c + d.
\end{align*}
\]

We start with \(G = \{ f_4 \} \) and \(P_1 = \{ (f_3, bf_4) \} \), thus \(L_1 = \{ f_3, bf_4 \} \).

Let us do symbolic preprocessing:

\[
\begin{align*}
T(L_1) &= \{ ab, b^2, bc, ad, bd, cd \} \\
L_1 &= \{ f_3, bf_4 \}
\end{align*}
\]

\(b^2 \notin L(G) \), \(bc \notin L(G) \),
Example: Cyclic-4

\(R = \mathbb{Q}[a, b, c, d], < \text{ denotes DRL and we use the normal selection strategy for } \textbf{Select}(P). \ l = \langle f_1, \ldots, f_4 \rangle, \text{ where} \)

\[
\begin{align*}
 f_1 &= abcd - 1, \\
 f_2 &= abc + abd + acd + bcd, \\
 f_3 &= ab + bc + ad + cd, \\
 f_4 &= a + b + c + d.
\end{align*}
\]

We start with \(G = \{ f_4 \} \) and \(P_1 = \{ (f_3, bf_4) \} \), thus \(L_1 = \{ f_3, bf_4 \} \).

Let us do symbolic preprocessing:

\[
\begin{align*}
 T(L_1) &= \{ ab, b^2, bc, ad, bd, cd, d^2 \} \\
 L_1 &= \{ f_3, bf_4, df_4 \}
\end{align*}
\]

\(b^2 \notin L(G), \ bc \notin L(G), \ d\text{lt}(f_4) = ad, \)
Example: Cyclic-4

\(\mathcal{R} = \mathbb{Q}[a, b, c, d] \), \(< \) denotes DRL and we use the normal selection strategy for \textbf{Select}(\(P \)). \(I = \langle f_1, \ldots, f_4 \rangle \), where

\[
\begin{align*}
 f_1 &= abcd - 1, \\
 f_2 &= abc + abd + acd + bcd, \\
 f_3 &= ab + bc + ad + cd, \\
 f_4 &= a + b + c + d.
\end{align*}
\]

We start with \(G = \{f_4\} \) and \(P_1 = \{(f_3, bf_4)\} \), thus \(L_1 = \{f_3, bf_4\} \).

Let us do symbolic preprocessing:

\[
\begin{align*}
 T(L_1) &= \{ab, b^2, bc, ad, bd, cd, d^2\} \\
 L_1 &= \{f_3, bf_4, df_4\}
\end{align*}
\]

\(b^2 \not\in L(G), \ bc \not\in L(G), \ df_4(f_4) = ad \), all others also \(\not\in L(G), \)
Example: Cyclic-4

Now reduction:
Convert polynomial data L_1 to Macaulay Matrix M_1

\[
\begin{pmatrix}
ab & b^2 & bc & ad & bd & cd & d^2 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 & 0
\end{pmatrix}
\]
Example: Cyclic-4

Now reduction:
Convert polynomial data L_1 to Macaulay Matrix M_1

$$
\begin{align*}
\text{df}_4 & \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ df_4 & \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
\end{align*}
\end{align*}
$$

Gaussian Elimination of M_1:

$$
\begin{align*}
\text{df}_4 & \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ f_3 & \begin{pmatrix} 1 & 0 & 1 & 0 & -1 & 0 & -1 \\
bf_4 & \begin{pmatrix} 0 & 1 & 0 & 0 & 2 & 0 & 1 \\
\end{align*}
\end{align*}
$$
Example: Cyclic-4

Convert matrix data back to polynomial structure F_1:

$$
\begin{bmatrix}
ab & b^2 & bc & ad & bd & cd & d^2 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & -1 & 0 & -1 \\
0 & 1 & 0 & 0 & 2 & 0 & 1
\end{bmatrix}
$$

\[
F_1 = \left\{ \begin{array}{l}
\underbrace{ad + bd + cd + d^2}_{f_5},
\underbrace{ab + bc - bd - d^2}_{f_6},
\underbrace{b^2 + 2bd + d^2}_{f_7}
\end{array} \right\}
\]
Example: Cyclic-4

Convert matrix data back to polynomial structure F_1:

$$
\begin{pmatrix}
ab & b^2 & bc & ad & bd & cd & d^2 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & -1 & 0 & -1 \\
0 & 1 & 0 & 0 & 2 & 0 & 1
\end{pmatrix}
$$

$$
F_1 = \begin{cases}
ad + bd + cd + d^2, & f_5 \\
ab + bc - bd - d^2, & f_6 \\
b^2 + 2bd + d^2, & f_7
\end{cases}
$$

\[\text{lt}(f_5), \text{lt}(f_6) \in L(G), \text{ so} \]

\[G \leftarrow G \cup \{f_7\}.\]
Next round:

\[G = \{ f_4, f_7 \}, \ P_2 = \{ (f_2, bcf_4) \}, \ L_2 = \{ f_2, bcf_4 \}. \]
Next round:

\[G = \{ f_4, f_7 \}, \quad P_2 = \{ (f_2, bcf_4) \}, \quad L_2 = \{ f_2, bcf_4 \}. \]

We can simplify the computations:

\[\text{lt} (bcf_4) = abc = \text{lt} (cf_6). \]

\(f_6 \) possibly better reduced than \(f_4 \). (\(f_6 \) is not in \(G \! \)!)
Example: Cyclic-4

Next round:

\[G = \{ f_4, f_7 \}, \quad P_2 = \{(f_2, bcf_4)\}, \quad L_2 = \{ f_2, bcf_4 \}. \]

We can simplify the computations:

\[\text{lt}(bcf_4) = abc = \text{lt}(cf_6). \]

\(f_6 \) possibly better reduced than \(f_4 \). (\(f_6 \) is not in \(G \)!

\[\implies L_2 = \{ f_2, cf_6 \} \]

Symbolic preprocessing:

\[T(L_2) = \{ abc, bc^2, abd, acd, bcd, cd^2 \} \]

\[L_2 = \{ f_2, cf_6 \} \]
Example: Cyclic-4

Next round:

\[G = \{ f_4, f_7 \}, \quad P_2 = \{(f_2, bcf_4)\}, \quad L_2 = \{ f_2, bcf_4 \}. \]

We can simplify the computations:

\[\text{lt}(bcf_4) = abc = \text{lt}(cf_6). \]

\(f_6 \) possibly better reduced than \(f_4 \). (\(f_6 \) is not in \(G \! \)!) \[\implies L_2 = \{ f_2, cf_6 \} \]

Symbolic preprocessing:

\[T(L_2) = \{ abc, bc^2, abd, acd, bcd, cd^2 \} \]

\[L_2 = \{ f_2, cf_6, \} \]

\(bc^2 \notin L(G), \)
Example: Cyclic-4

Next round:

\[G = \{f_4, f_7\}, \quad P_2 = \{(f_2, bcf_4)\}, \quad L_2 = \{f_2, bcf_4\}. \]

We can simplify the computations:

\[\text{lt}(bcf_4) = abc = \text{lt}(cf_6). \]

\(f_6\) possibly better reduced than \(f_4\). \((f_6\ \text{is not in} \ G!\)

\[\Rightarrow \quad L_2 = \{f_2, cf_6\}\]

Symbolic preprocessing:

\[T(L_2) = \{abc, bc^2, abd, acd, bcd, cd^2\} \]

\[L_2 = \{f_2, cf_6\} \]

\(bc^2 \not\in L(G), \quad abd = \text{lt}(bdf_4), \quad \text{but also} \quad abd = \text{lt}(bf_5)! \)
Next round:

\[G = \{ f_4, f_7 \}, \; P_2 = \{(f_2, bcf_4)\}, \; L_2 = \{ f_2, bcf_4 \}. \]

We can simplify the computations:

\[\text{lt}(bcf_4) = abc = \text{lt}(cf_6). \]

\(f_6 \) possibly better reduced than \(f_4 \). (\(f_6 \) is not in \(G \! \))

\[\implies L_2 = \{ f_2, cf_6 \} \]

Symbolic preprocessing:

\[T(L_2) = \{ abc, bc^2, abd, acd, bcd, cd^2 \} \]

\[L_2 = \{ f_2, cf_6 \} \]

\(bc^2 \notin L(G), \; abd = \text{lt}(bdf_4) \), but also \(abd = \text{lt}(bf_5) \! \)

Let us investigate this in more detail.
Interlude – Simplify

Idea
Replace $u \cdot f$ by $(wv) \cdot g$ where $vg \in F_i$ for a previous reduction step.
\Rightarrow Reuse rows that are reduced but not “in” G.

Note
\Rightarrow Tries to reuse all rows from old matrices.
\Rightarrow We need to keep them in memory.
\Rightarrow We also simplify generators of S-pairs, as we have done in our example: $(f_2, bfc_4) = (f_2, cf_6)$.
\Rightarrow One can also choose “better” reducers by other properties, not only “last reduced one”.
\Rightarrow Without Simplify the $F4$ algorithm is rather slow.
In our example: Choose bf_5 as reducer, not bdf_4.

Interlude – Simplify

Idea
Replace $u \cdot f$ by $(wv) \cdot g$ where $vg \in F_i$ for a previous reduction step.
⇒ Reuse rows that are reduced but not “in” G.

Note
- Tries to reuse all rows from old matrices.
 ⇒ We need to keep them in memory.
- We also simplify generators of S-pairs, as we have done in our example: $(f_2, bcf_4) \rightarrow (f_2, cf_6)$.
- One can also choose “better” reducers by other properties, not only “last reduced one”.
- Without **Simplify** the F4 algorithm is rather slow.
Interlude – Simplify

Idea
Replace $u \cdot f$ by $(wv) \cdot g$ where $vg \in F_i$ for a previous reduction step.
⇒ Reuse rows that are reduced but not “in” G.

Note

- Tries to reuse all rows from old matrices.
 ⇒ We need to keep them in memory.
- We also simplify generators of S-pairs, as we have done in our example: $(f_2, bcf_4) \implies (f_2, cf_6)$.
- One can also choose “better” reducers by other properties, not only “last reduced one”.
- Without **Simplify** the F4 algorithm is rather slow.

In our example:
Choose bf_5 as reducer, not bdf_4.
Example: Cyclic-4

Symbolic preprocessing - now with **simplify**:

\[
T(L_2) = \{ abc, bc^2, abd, acd, bcd, cd^2 \}
\]

\[
L_2 = \{ f_2, cf_6 \}
\]

\[bc^2 \notin L(G), \]
Example: Cyclic-4

Symbolic preprocessing - now with simplify:

\[T(L_2) = \{ abc, bc^2, abd, acd, bcd, cd^2 \} \]
\[L_2 = \{ f_2, cf_6 \} \]

\(bc^2 \notin L(G), \quad abd = \text{lt}(bf_5), \)
Symbolic preprocessing - now with \textit{simplify}:

\[
T(L_2) = \{ abc, bc^2, abd, acd, bcd, cd^2, b^2d, c^2d \}
\]
\[
L_2 = \{ f_2, cf_6, bf_5 \}
\]

\(bc^2 \notin L(G), \ abd = \text{lt}(bf_5), \)
Symbolic preprocessing - now with simplify:

\[
T(L_2) = \{ abc, bc^2, abd, acd, bcd, cd^2, b^2d, c^2d, \ldots \}
\]

\[
L_2 = \{ f_2, cf_6, bf_5, cf_5, df_7 \}
\]

\(bc^2 \notin L(G), \ abd = \text{lt}(bf_5), \) and so on.
Example: Cyclic-4

Symbolic preprocessing - now with simplify:

\[T(L_2) = \{ abc, bc^2, abd, acd, bcd, cd^2, b^2d, c^2d, \ldots \} \]

\[L_2 = \{ f_2, cf_6, bf_5, cf_5, df_7 \} \]

\(bc^2 \notin L(G), \ abd = \text{lt}(bf_5) \), and so on.

Now try to exploit the special structure of the Macaulay matrices.
Improve Gaussian Elimination

Use **Linear Algebra** for reduction steps in GB computations.
Improve Gaussian Elimination

Use **Linear Algebra** for reduction steps in GB computations.

\[
\begin{array}{cccccccc}
1 & 3 & 0 & 0 & 7 & 1 & 0 \\
1 & 0 & 4 & 1 & 0 & 0 & 5 \\
0 & 1 & 6 & 0 & 8 & 0 & 1 \\
0 & 5 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 1 & 3 & 1 \\
\end{array}
\]
Improve Gaussian Elimination

Use **Linear Algebra** for reduction steps in GB computations.

\[
\begin{bmatrix}
1 & 3 & 0 & 0 & 7 & 1 & 0 \\
1 & 0 & 4 & 1 & 0 & 0 & 5 \\
0 & 1 & 6 & 0 & 8 & 0 & 1 \\
0 & 5 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 1 & 3 & 1
\end{bmatrix}
\]

Knowledge of underlying GB structure
Improve Gaussian Elimination

Use **Linear Algebra** for reduction steps in GB computations.

\[
\begin{align*}
\text{S-pair} & \quad \begin{cases}
1 & 3 & 0 & 0 & 7 & 1 & 0 \\
1 & 0 & 4 & 1 & 0 & 0 & 5 \\
0 & 1 & 6 & 0 & 8 & 0 & 1 \\
0 & 5 & 0 & 0 & 0 & 2 & 0 \\
\end{cases} \\
\text{reducer} & \quad \begin{cases}
0 & 0 & 0 & 0 & 1 & 3 & 1 \\
\end{cases}
\end{align*}
\]

Knowledge of underlying GB structure
Improve Gaussian Elimination

Use **Linear Algebra** for reduction steps in GB computations.

\[
\begin{align*}
\text{S-pair} & :
\begin{cases}
1 & 3 & 0 & 0 & 7 & 1 & 0 \\
1 & 0 & 4 & 1 & 0 & 0 & 5 \\
0 & 1 & 6 & 0 & 8 & 0 & 1 \\
0 & 5 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 1 & 3 & 1
\end{cases} \\
\text{reducer} & : 0 & 0 & 0 & 0 & 1 & 3 & 1
\end{align*}
\]

Knowledge of underlying GB structure
Improve Gaussian Elimination

Use **Linear Algebra** for reduction steps in GB computations.

\[
\begin{align*}
\text{S-pair} & \quad \begin{cases}
1 & 3 & 0 & 0 & 7 & 1 & 0 \\
1 & 0 & 4 & 1 & 0 & 0 & 5 \\
0 & 1 & 6 & 0 & 8 & 0 & 1 \\
0 & 5 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 1 & 3 & 1
\end{cases} \\
\text{reducer} & \quad \leftarrow
\end{align*}
\]

Knowledge of underlying GB structure

Idea

Do a static **reordering before** the Gaussian Elimination to achieve a better initial shape. **Reorder afterwards.**
Faugère-Lachartre Idea

1st step: Sort pivot and non-pivot columns

```
1 3 0 0 7 1 0
1 0 4 1 0 0 5
0 1 6 0 8 0 1
0 5 0 0 0 2 0
0 0 0 0 1 3 1
```
Faugère-Lachartre Idea

1st step: Sort pivot and non-pivot columns

1 3 0 0 7 1 0
1 0 4 1 0 0 5
0 1 6 0 8 0 1
0 5 0 0 0 2 0
0 0 0 0 1 3 1

Pivot column
Faugère-Lachartre Idea

1st step: Sort pivot and non-pivot columns

<table>
<thead>
<tr>
<th>1</th>
<th>3</th>
<th>0</th>
<th>0</th>
<th>7</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>6</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pivot column
1st step: Sort pivot and non-pivot columns

<table>
<thead>
<tr>
<th>Pivot column</th>
<th>Non-Pivot column</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 3 0 0 7 1 0</td>
<td></td>
</tr>
<tr>
<td>1 0 4 1 0 0 5</td>
<td></td>
</tr>
<tr>
<td>0 1 6 0 8 0 1</td>
<td></td>
</tr>
<tr>
<td>0 5 0 0 0 2 0</td>
<td></td>
</tr>
<tr>
<td>0 0 0 0 1 3 1</td>
<td></td>
</tr>
</tbody>
</table>
1st step: Sort pivot and non-pivot columns

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>6</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pivot column

Non-Pivot column
Faugère-Lachartre Idea

1st step: Sort pivot and non-pivot columns

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>3</th>
<th>0</th>
<th>0</th>
<th>7</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pivot column</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Non-Pivot column</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>3</th>
<th>7</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pivot column</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Non-Pivot column</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
2nd step: Sort pivot and non-pivot rows

\[
\begin{array}{cccccc}
1 & 3 & 7 & 0 & 0 & 1 \\
1 & 0 & 0 & 4 & 1 & 0 \\
1 & 0 & 0 & 4 & 1 & 0 \\
0 & 1 & 8 & 6 & 0 & 0 \\
0 & 5 & 0 & 0 & 0 & 2 \\
0 & 0 & 1 & 0 & 0 & 3 \\
0 & 0 & 1 & 0 & 0 & 3 \\
\end{array}
\]
2nd step: Sort pivot and non-pivot rows

1 3 7 0 0 1 0
1 0 0 4 1 0 5
0 1 8 6 0 0 9
0 5 0 0 0 2 0
0 0 1 0 0 3 1

Pivot row
Faugère-Lachartre Idea

2nd step: Sort pivot and non-pivot rows

\[
\begin{array}{cccccccc}
1 & 3 & 7 & 0 & 0 & 1 & 0 & \text{Pivot row} \\
1 & 0 & 0 & 4 & 1 & 0 & 5 & \text{Non-Pivot row} \\
0 & 1 & 8 & 6 & 0 & 0 & 9 & \\
0 & 5 & 0 & 0 & 0 & 2 & 0 & \\
0 & 0 & 1 & 0 & 0 & 3 & 1 & \\
\end{array}
\]
Faugère-Lachartre Idea

2nd step: Sort pivot and non-pivot rows

```
1 3 7 0 0 1 0
1 0 0 4 1 0 5
0 1 8 6 0 0 9
0 5 0 0 0 2 0
0 0 1 0 0 3 1
```

Pivot row

Non-Pivot row
Faugère-Lachartre Idea

2nd step: Sort pivot and non-pivot rows

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>3</th>
<th>7</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>4</th>
<th>1</th>
<th>0</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
</tbody>
</table>
3rd step: Reduce lower left part to zero

\[
\begin{array}{cccc}
1 & 0 & 0 & 4 \\
0 & 5 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 3 & 7 & 0 \\
0 & 1 & 8 & 6 \\
0 & 0 & 1 & 0 \\
0 & 0 & 3 & 1 \\
0 & 0 & 0 & 9
\end{array}
\]
Faugère-Lachartre Idea

3rd step: Reduce lower left part to zero

```
| 1 0 0 | 4 1 0 5 |
| 0 5 0 | 0 0 2 0 |
| 0 0 1 | 0 0 3 1 |
| 1 3 7 | 0 0 1 0 |
| 0 1 8 | 6 0 0 9 |
```

```
| 1 0 0 | 4 1 0 5 |
| 0 5 0 | 0 0 2 0 |
| 0 0 1 | 0 0 3 1 |
| 0 0 0 | 7 10 3 10 |
| 0 0 0 | 6 0 2 1 |
```
Faugère-Lachartre Idea

4th step: Reduce lower right part

```
1 0 0 4 1 0 5
0 5 0 0 0 2 0
0 0 1 0 0 3 1
0 0 0 7 10 3 10
0 0 0 6 0 2 1
```
Faugère-Lachartre Idea

4th step: Reduce lower right part

```
1 0 0 4 1 0 5
0 5 0 0 0 2 0
0 0 1 0 0 3 1
0 0 0 7 10 3 10
0 0 0 6 0 2 1
```

→

```
1 0 0 4 1 0 5
0 5 0 0 0 2 0
0 0 1 0 0 3 1
0 0 0 7 10 3 10
0 0 0 0 4 1 5
```
Faugère-Lachartre Idea

4th step: Reduce lower right part

\[
\begin{array}{cccc}
1 & 0 & 0 & 4 \\
0 & 5 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 7 \\
0 & 0 & 0 & 6 \\
\end{array}
\quad\quad\quad
\begin{array}{cccc}
1 & 0 & 0 & 4 \\
0 & 5 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 7 \\
0 & 0 & 0 & 6 \\
\end{array}
\]

5th step: Remap columns of lower right part

\[
\begin{array}{cccc}
1 & 0 & 0 & 5 \\
0 & 5 & 0 & 2 \\
0 & 0 & 3 & 1 \\
0 & 7 & 10 & 3 \\
0 & 6 & 2 & 1 \\
\end{array}
\quad\quad\quad
\begin{array}{cccc}
1 & 0 & 0 & 5 \\
0 & 5 & 0 & 2 \\
0 & 0 & 3 & 1 \\
0 & 7 & 10 & 3 \\
0 & 6 & 2 & 1 \\
\end{array}
\]
How our matrices look like (1)
How our matrices look like (2)
Hybrid Matrix Multiplication $A^{-1}B$
Hybrid Matrix Multiplication $A^{-1}B$
Reduce C to zero
Gaussian Elimination on D
New information
GBLA

- New open-source, plain C library, specialized linear algebra for GB computations
- at the moment: dedicated to finite fields, $p \leq 65521 < 2^{16}$
- written together with Brice Boyer and Jean-Charles Faugère
- several strategies for splicing and reduction steps
- includes converter for our dedicated matrix format, e.g. from/to Magma
- comes with a huge matrix database, > 280 GB of data
New open-source, plain C library, specialized linear algebra for GB computations

at the moment: dedicated to finite fields, $p \leq 65521 < 2^{16}$

written together with Brice Boyer and Jean-Charles Faugère

several strategies for splicing and reduction steps

includes converter for our dedicated matrix format, e.g. from/to Magma

comes with a huge matrix database, > 280 GB of data

Repository will soon be open for external contributions!

http://hpac.imag.fr/gbla/
GBLA vs. Faugère-Lachartre

<table>
<thead>
<tr>
<th>Implementation</th>
<th>FL reduction</th>
<th>GBLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix/Threads:</td>
<td>1 16 32</td>
<td>1 16 32</td>
</tr>
<tr>
<td>F_5 kat13 mat5</td>
<td>16.7 2.7 2.3</td>
<td>14.5 2.02 1.87</td>
</tr>
<tr>
<td></td>
<td>mat6</td>
<td>27.3 4.15 4.0</td>
</tr>
<tr>
<td>F_5 kat14 mat7</td>
<td>139 17.4 16.6</td>
<td>142 13.4 10.6</td>
</tr>
<tr>
<td></td>
<td>mat8</td>
<td>181 24.95 23.1</td>
</tr>
<tr>
<td>F_5 kat15 mat7</td>
<td>629 61.8 55.6</td>
<td>633 55.1 38.2</td>
</tr>
<tr>
<td>F_5 kat16 mat6</td>
<td>1,203 110 83.3</td>
<td>1,147 98.7 69.9</td>
</tr>
<tr>
<td>F_5 mr-9-10-7 mat3</td>
<td>591 70.8 71.3</td>
<td>733 57.3 37.9</td>
</tr>
</tbody>
</table>
GBLA vs. Magma V2.20-10

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Magma</th>
<th>GBLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix/Threads:</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>F_4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kat12 mat9</td>
<td>11.2</td>
<td>11.4</td>
</tr>
<tr>
<td>kat13 mat2</td>
<td>0.94</td>
<td>1.18</td>
</tr>
<tr>
<td>mat3</td>
<td>9.33</td>
<td>11.0</td>
</tr>
<tr>
<td>mat9</td>
<td>168</td>
<td>165</td>
</tr>
<tr>
<td>mat8</td>
<td>2747</td>
<td>2545</td>
</tr>
<tr>
<td>mat7</td>
<td>10,345</td>
<td>9,514</td>
</tr>
<tr>
<td>mat8</td>
<td>13,936</td>
<td>12,547</td>
</tr>
<tr>
<td>mat9</td>
<td>24,393</td>
<td>22,247</td>
</tr>
</tbody>
</table>

