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What is this talk all about?

1. Efficient computations of Gröbner bases using so-called
signature-based algorithms

2. Explanation of the criteria those algorithms are based on in
comparison to Buchberger’s criteria.

3. Explanation of termination issues and how they can be
solved

4. Comparison between different attempts in the
signature-based world

Convention

In this talk R = K [x1, . . . , xn], where K is a field. Moreover, < is a
well-order on R .
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The following section is about

1 Introducing Gröbner bases
Gröbner basics
Computation of Gröbner bases
Problem of zero reduction

2 Signature-based algorithms
The basic idea
Computing Gröbner bases using signatures
How to reject useless pairs?

3 GGV and F5 – Differences and similarities
What are the differences?
F5
GGV
F5E – Combine the ideas

4 Experimental results
Preliminaries
Critical pairs & zero reductions
Timings
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Basic problem

1. Given a ring R and an ideal I � R we want to answer some
question w.r.t. to I .
⇒ We want to compute a Gröbner basis G of I .

2. G can be understood as a nice representation for I .
Gröbner bases were discovered by Bruno Buchberger in 1965.
Having computed G lots of difficult questions concerning I

are easier to answer using G instead of I .

3. This is due to some nice properties of Gröbner bases. The
following is very useful to understand how to compute a
Gröbner basis.
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Main properties of Göbner bases

Definition

G = {g1, . . . , gr} is a Gröbner basis of an ideal I = 〈f1, . . . , fm〉 iff
G ⊂ I and 〈lm(g1), . . . , lm(gr )〉 = 〈lm(f ) | f ∈ I 〉.
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Main properties of Göbner bases

Definition

G = {g1, . . . , gr} is a Gröbner basis of an ideal I = 〈f1, . . . , fm〉 iff
G ⊂ I and 〈lm(g1), . . . , lm(gr )〉 = 〈lm(f ) | f ∈ I 〉.

Theorem (Buchberger’s Criterion)

The following are equivalent:

1. G is a Gröbner basis of an ideal I .

2. For all p, q ∈ G it holds that

Spol(p, q)
G
−→ 0,

where

� Spol(p, q) = lc(q)upp − lc(p)uqq, and

� ur =
lcm(lm(p),lm(q))

lm(r) .
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A lovely example

Example

Assume the ideal I = 〈g1, g2〉�Q[x , y , z ] where g1 = xy − z2,
g2 = y2 − z2; < degree reverse lexicographical order.
Computing

Spol(g2, g1) = xg2 − yg1

= xy2 − xz2 − xy2 + yz2

= −xz2 + yz2,

we get a new element g3 = xz2 − yz2.
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Computation of Gröbner bases

The usual Buchberger Algorithm to compute G follows easily
from Buchberger’s Criterion:
Input: Ideal I = 〈f1, . . . , fm〉
Output: Gröbner basis G of I

1. G = ∅

2. G := G ∪ {fi} for all i ∈ {1, . . . ,m}

3. Set P := {(gi , gj ) | gi , gj ∈ G , i > j}
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Output: Gröbner basis G of I

1. G = ∅

2. G := G ∪ {fi} for all i ∈ {1, . . . ,m}

3. Set P := {(gi , gj ) | gi , gj ∈ G , i > j}

4. Choose (p, q) ∈ P , P := P \ {p}

5. r := Spol(p, q)

(a) If r
G
−→ 0

Go on with the next element in P .

7 / 37



Computation of Gröbner bases
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Output: Gröbner basis G of I

1. G = ∅

2. G := G ∪ {fi} for all i ∈ {1, . . . ,m}

3. Set P := {(gi , gj ) | gi , gj ∈ G , i > j}

4. Choose (p, q) ∈ P , P := P \ {p}

5. r := Spol(p, q)

(a) If r
G
−→ 0 ⇒ no new information

Go on with the next element in P .
(b) If r

G
−→ h 6= 0

Add h to G .
Build new s-polynomials with h and add them to P .
Go on with the next element in P .

6. When P = ∅ we are done and G is a Gröbner basis of I .
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Output: Gröbner basis G of I

1. G = ∅

2. G := G ∪ {fi} for all i ∈ {1, . . . ,m}

3. Set P := {(gi , gj ) | gi , gj ∈ G , i > j}

4. Choose (p, q) ∈ P , P := P \ {p}

5. r := Spol(p, q)

(a) If r
G
−→ 0 ⇒ no new information

Go on with the next element in P .
(b) If r

G
−→ h 6= 0 ⇒ new information

Add h to G .
Build new s-polynomials with h and add them to P .
Go on with the next element in P .

6. When P = ∅ we are done and G is a Gröbner basis of I .
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Computing Gröbner bases incrementally

A slightly variant of this algorithm is the following computing the
Gröbner basis incrementally:
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2. Compute Gröbner basis G2 of 〈f1, f2〉 by

(a) G2 = G1 ∪ {f2},
(b) computing s-polynomials of f2 with elements of G1

(c) reducing all s-polynomials w.r.t. G2 and possibly add new
elements to G2

3. . . .

4. G := Gm is the Gröbner basis of I
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Problem of zero reduction

Lots of useless computations

It is very time-consuming to compute G such that Spol(p, q)
reduces to zero w.r.t. G for all p, q ∈ G .
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Problem of zero reduction

Lots of useless computations

It is very time-consuming to compute G such that Spol(p, q)
reduces to zero w.r.t. G for all p, q ∈ G .
When such an s-polynomial reduces to an element h 6= 0 w.r.t. G
then we get new information for the structure of G , namely
adding h to G .
But most of the s-polynomials considered during the algorithm
reduce to zero w.r.t. G .
⇒ No new information from zero reductions

Let’s have a look at the example again:
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An example of zero reduction

Example

Given g1 = xy − z2, g2 = y2 − z2,we have computed

Spol(g2, g1) = xy2 − xz2 − xy2 + yz2 = −xz2 + yz2.
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Let us compute Spol(g3, g1) next:
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An example of zero reduction

Example

Given g1 = xy − z2, g2 = y2 − z2,we have computed

Spol(g2, g1) = xy2 − xz2 − xy2 + yz2 = −xz2 + yz2.

We get a new element g3 = xz2 − yz2 for G .
Let us compute Spol(g3, g1) next:

Spol(g3, g1) = xyz2 − y2z2 − xyz2 + z4 = −y2z2 + z4.

Now we can reduce further with z2g2:

−y2z2 + z4 + y2z2 − z4 = 0.

⇒ How to detect zero reductions in advance?
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Known ideas for optimizing computations

◮ Predict zero reductions (Buchberger, Gebauer-Möller,
Möller-Mora-Traverso, etc.)

◮ Selection strategies: Pick pairs in a clever way (Buchberger,
Giovini et al., Möller et al.)

◮ Homogenization: d -Gröbner bases

◮ Involutive bases: Forbid some top-reductions (Gerdt,
Blinkov)
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Signatures of polynomials

Let I = 〈f1, . . . , fm〉. The idea is to give each polynomial during
the computations of the algorithm a so-called signature:
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Signatures of polynomials

Let I = 〈f1, . . . , fm〉. The idea is to give each polynomial during
the computations of the algorithm a so-called signature:

1. Let e1, . . . , em ∈ Rm be canonical generators such that
π : Rm → R : π(ei ) = fi for all i .

2. Any polynomial p ∈ I can be written as p = h1f1+ . . .+ hmfm.

3. Let k be the greatest index such that hk is not zero.
⇒ A signature S(p) = lm(hk)ek .

4. A generating element fi of I gets the signature S(fi) = ei .

5. Extend the monomial order on the signatures

(a) Well-order ≺ on the set of all signatures
(b) Existence of the minimal signature of a polynomial p
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Orders on signatures

Remark

Note that there are various ways to define the order ≺ depending
on different preferences of the monomial resp. the index of the
signature

1. 2002 Faugère [Fa02]

2. 2009 Ars and Hashemi [AH09]

3. 2010 Gao, Volny, and Wang [GVW11]

4. 2010 / 2011 Sun and Wang [SW10, SW11]
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Orders on signatures

We use Faugère’s variant:

tkek ≻ tℓeℓ ⇔ (a)k > ℓ or

(b)k = ℓ and tk > tℓ
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Orders on signatures

We use Faugère’s variant:

tkek ≻ tℓeℓ ⇔ (a)k > ℓ or

(b)k = ℓ and tk > tℓ

Example

Assume Q[x , y , z ] with degree reverse lexicographical order. Then

1. x2ye3 ≻ z3e3,

2. 1 · e5 ≻ x12y234z3456e4.
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Signatures of s-polynomials

Using signatures in a Gröbner basis algorithm we clearly need to
define them for s-polynomials, too:

Spol(p, q) = lc(q)upp − lc(p)uqq

such that

S (Spol(p, q)) = upS(p)

upS(p) ≻ uqS(q).
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Example revisited - with signatures

In our example

g3 = Spol(g2, g1) = xg2 − yg1

⇒ S(g3) = xS(g2) = xe2.
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In our example

g3 = Spol(g2, g1) = xg2 − yg1

⇒ S(g3) = xS(g2) = xe2.

It follows that Spol(g3, g1) = yg3 − z2g1 has

S (Spol(g3, g1)) = yS(g3) = xye2.

Note that S (Spol(g3, g1)) = (xye2) and lm(g1) = xy .
⇒ We know that Spol(g3, g1) will reduce to zero!
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How does this work?

The main idea is to check if the next element Spol(p, q) has the
minimal signature.
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How does this work?

The main idea is to check if the next element Spol(p, q) has the
minimal signature.
If S

(

Spol(p, q)
)

is not minimal ⇒ Spol(p, q) can be discarded.

Question

How do we know, if the signature of a polynomial / critical pair is
not minimal?
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Computing Gröbner bases using signatures

Input: Gi−1 = {g1, . . . , gr−1}, a Gröbner basis of 〈f1, . . . , fi−1〉
Output: Gröbner basis G of 〈f1, . . . , fi 〉
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Output: Gröbner basis G of 〈f1, . . . , fi 〉

1. gr := fi

2. G =
{

(e1, g1), . . . , (er−1, gr−1), (er , gr )
}

(monic)

3. Set P :=
{( lcm(gr ,gj )

lm(gr )
er , gr , gj ), j < r

}

4. While P 6= ∅

(a) Choose (λer , p, q) ∈ P such that λer is minimal.
(b) Delete (λer , p, q) from P .
(c) (λer ) not minimal for up − vq ⇒ goto 4.
(d)

(

S(h), h
)

= reduce
(

(λer , up − vq),G
)

⇐ sig-safe!
(e) h 6= 0 & ∄(S(g), g) ∈ G , t ∈ M s.t. tS(g) = S(h) and

tlm(g) = lm(h)

(i) For all g ∈ G add (σer , h, g) to P.
(ii) Add

(

S(h),h
)

to G .

5. When P = ∅ we are done and G is a Gröbner basis of 〈f1, . . . , fi 〉.
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Reductions w.r.t. signatures

Let
(

S(p), p
)

,
(

S(q), q
)

such that λlm(q) = lm(p).
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Reductions w.r.t. signatures

Let
(

S(p), p
)

,
(

S(q), q
)

such that λlm(q) = lm(p).

1. Sig-safe: S(p − λq) = S(p).

2. Sig-unsafe: S(p − λq) = λS(q).

3. Sig-cancelling: S(p) = λS(q) ⇒ S(p − λq) =?

Example

S(p) = xy2e1, S(q) = xye1, x > y > z

1. Sig-safe: S(p − zq) = xy2e1.

2. Sig-unsafe: S(p − xq) = x2ye1.

3. Sig-cancelling: S(p − yq) =?
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Computing Gröbner bases using signatures

Termination?

1. No new s-polynomials for
(

S(h), h
)

= λ
(

S(g), g
)

2. Each new element expands
〈(

S(h), lm(h)
)〉
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Computing Gröbner bases using signatures

Termination?

1. No new s-polynomials for
(

S(h), h
)

= λ
(

S(g), g
)

2. Each new element expands
〈(

S(h), lm(h)
)〉

Correctness?

1. Proceed by minimal signature in P

2. All s-polynomials considered:
sig-unsafe reduction ⇒ new critical pair next round

3. All nonzero elements added besides
(

S(h), h
)

= λ
(

S(g), g
)
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Allowed criteria?

Non-minimal signature ( NM )
S(h) not minimal for h? ⇒ discard h
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Allowed criteria?

Non-minimal signature ( NM )
S(h) not minimal for h? ⇒ discard h

Proof.

1. There exists syzygy s with lm(s) = S(h).

2. We can rewrite h using a lower signature.

3. We proceed by increasing signatures.
⇒ Those reductions are already considered.
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Allowed criteria?

Rewritable signature ( RW )
S(g) = S(h)? ⇒ discard either g or h

Proof.

1. S(g − h) < S(h),S(g).

2. We proceed by increasing signatures.
⇒ Those reductions are already considered.
⇒ We can rewrite h = g+ terms of lower signature.
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The following section is about

1 Introducing Gröbner bases
Gröbner basics
Computation of Gröbner bases
Problem of zero reduction

2 Signature-based algorithms
The basic idea
Computing Gröbner bases using signatures
How to reject useless pairs?

3 GGV and F5 – Differences and similarities
What are the differences?
F5
GGV
F5E – Combine the ideas

4 Experimental results
Preliminaries
Critical pairs & zero reductions
Timings
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What are the differences?

1. Different implementations of (NM) and (RW)
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(sig-safe) reduction steps. This usage is quite soft in GGV and
quite aggressive in F5.
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What are the differences?

1. Different implementations of (NM) and (RW)

2. Different implementations of the sig-safe reduction

Remark

The presented criteria (NM) and (RW) are also used during the
(sig-safe) reduction steps. This usage is quite soft in GGV and
quite aggressive in F5.

⇒ Termination: GGV , – F5 /
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F5’s implementation of (NM)

If

S(g) = λe<i ,

S(h) = σei , and

lm(g) | σ,

then discard h.

26 / 37



F5’s implementation of (RW)

If there exists
(

S(g), g
)

such that

S(g) = λer ,

S(h) = σS(f ) = σ
(

τer
)

,

λ | στ, and

g computed after f ,

then discard h.

27 / 37



F5’s implementation of (RW)

If there exists
(

S(g), g
)

such that

S(g) = λer ,

S(h) = σS(f ) = σ
(

τer
)

,

λ | στ, and

g computed after f ,

then discard h.

Remark

This is an aggressive implementation of (RW) changing “equality”
to “divisibility” in the criterion.
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GGV’s implementation of (NM)

Initially H =
{

lm(g1), . . . , lm(gr−1)
}

.
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GGV’s implementation of (NM)

Initially H =
{

lm(g1), . . . , lm(gr−1)
}

.
Whenever p reduces to zero

⇒ H = H ∪ {λ} where S(p) = λer .

If

S(g) = σer ,

∃h ∈ H such that h | σ,

then discard g .

Remark

This is F5’s NM criterion with additional criteria added during the
computation.
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GGV’s implementation of (RW)

If

S(g) = S(h),

then consider only g or h.
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GGV’s implementation of (RW)

If

S(g) = S(h),

then consider only g or h.

Remark

This is used when creating new critical pairs.
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F5E – Combine the ideas

Behaviour depending on number of zero reductions

◮ GGV actively uses zero reductions to improve (NM).

◮ F5 does not do this, but possible incorporates some of this
data in (RW).

◮ Checking by F5’s (RW) costs much more time than checking
by (NM).

30 / 37



F5E – Combine the ideas

Behaviour depending on number of zero reductions

◮ GGV actively uses zero reductions to improve (NM).

◮ F5 does not do this, but possible incorporates some of this
data in (RW).

◮ Checking by F5’s (RW) costs much more time than checking
by (NM).

The following combination is straightforward:

◮ Use the F5 Algorithm.

◮ Add GGV’s (NM) to it:
Whenever g reduces to zero, add S(g) to H.
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Test environments

All examples are computed in the following setting:

1. F32003,

2. graded reverse lexicographical order.
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Test environments

All examples are computed in the following setting:

1. F32003,

2. graded reverse lexicographical order.

All examples are computed on the following machine:

1. MacBook Pro 7,1 ( Intel Core 2 Duo P8800 ),

2. 4GB Ram,

3. 5,400 rpm HDD,

4. 64-bit Ubuntu 10.10.

5. Singular 3-1-3 Developer Version

Remark

All algorithms use the same underlying structure, differing only
in the implementation of the criteria presented in this talk.
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Number of critical pairs and zero reductions

System F5 F5E GGV

Katsura 9 886 0 886 0 886 0

Katsura 10 1,781 0 1,781 0 1,781 0

Eco 8 830 322 565 57 2,012 57

Eco 9 2,087 929 1,278 120 5,794 120

F744 1,324 342 1,151 169 2,145 169

Cyclic 7 1,018 76 978 36 3,072 36

Cyclic 8 7,066 244 5,770 244 24,600 244
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Number of critical pairs and zero reductions

System F5 F5E GGV

Katsura 9 886 0 886 0 886 0

Katsura 10 1,781 0 1,781 0 1,781 0

Eco 8 830 322 565 57 2,012 57

Eco 9 2,087 929 1,278 120 5,794 120

F744 1,324 342 1,151 169 2,145 169

Cyclic 7 1,018 76 978 36 3,072 36

Cyclic 8 7,066 244 5,770 244 24,600 244

Remark

Besides considering more critical pairs, GGV does a lot more single
reduction steps than F5 does.
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Timings in seconds

System F5 F5E GGV

Katsura 9 14.98 14.87 17.63

Katsura 10 153.35 152.39 192.20

Eco 8 2.24 0.38 0.49

Eco 9 77.13 8.19 13.51

F744 19.35 8.79 26.86

Cyclic 7 7.01 7.22 33.85

Cyclic 8 7,310.39 4,961.58 26,242.12
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Outlook

◮ Implementing F4F5:
Gaussian Elimination done by Bradford Hovinen
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Outlook

◮ Implementing F4F5:
Gaussian Elimination done by Bradford Hovinen

◮ Inhomogeneous case:
Working, but slow

◮ Orders on signatures:
Lots of tests, heuristics

◮ Parallelization:
On criteria checks, needs thread-safe omalloc

◮ Syzygy computations:
Needs implementation

◮ Generalizing criteria:
Using more data, combining with Buchberger’s criteria, etc.
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