
An Introduction on
Polynomial System Solving

#1
Setting and basic properties

System P of polynomial equations

f1 = 0, . . . , fm = 0

where fi ∈ k[x1, . . . , xn] for some field k.

Throughout the talk we (hopefully) assume
m equations in n variables.

Solutions? Go to algebraic closure K of k

Let I = ⟨f1, . . . , fm⟩ ⊂ R := K[x1, . . . , xn].

Compute
V(I) = {z ∈ Kn | fi(z) = 0 for i = 1, . . . ,m}

= {z ∈ Kn | f(z) = 0 ∀f ∈ I} .

P is inconsistent if it has no solution.

P is overdetermined if m > n.
Not all overdetermined systems are inconsistent, e.g.
P =

(
x3 − 1 = 0, x2 − 1 = 0

)
has solution x = 1.

P is underdetermined if m < n.
An underdetermined system is either inconsistent
or it has infinitely many solutions.

P is positive-dimensional if it has
infinitely many solutions.

P is zero-dimensional if it has
finitely many solutions.
(Corresponds to dimV(I) = 0.)

Let P be zero-dimensional and m = n:

Bézout’s theorem gives us:
deg fi = di ⇒ at most

∏m
i=1 di solutions.

Bound is sharp and exponential in number
of variables.

In general: solving is difficult.

What does solving mean?

If P is positive-dimensional then counting solutions
is meaningless.

Try to find a description of the solutions from which
we can easily extract the relevant data.

Algebraic geometry, here we go!

“Does P over Q has a finite number of real solutions?
If so, compute them.”

Cylindrical algebraic decomposition (CAD):

Complexity: doubly exponential in n.

A semi-algebraic set / cell is a finite union of subsets of Rn

(R is a real closed field) defined by a finite sequence of
polynomial equations or inequalities.

A CAD is a decomposition of Rn into connected semi-algebraic
sets on which each polynomial has constant sign (+,−, 0).

When projecting π : Rn → Rn−k then for cells C and D,
either π(C) = π(D) or π(C) ∩ π(D) = ∅.

⇒ Images of π give CAD of Rn−k.

Algorithmic idea

Sequence of projections Rn → Rn−1 → . . .→ R.

Take f =
∏m

i=1 fi, let g = gcd(f, f ′) (w.r.t. xn).
Zeroes of g and intersections of fi give cell boundaries
(no local variation of f = 0 when perturbing xn).

Zeroes of univariate polynomials provide critical points for
cell decomposition of R in zero- and one-dimensional cells.

Lift them back up, get a cylinder of cells from R in R2.

Go on till Rn.

Let’s restrict to zero-dimensional systems in the following.

Solving means to compute all solutions.

There are two main ways to output the solutions:

Numerical representation

For real/complex solutions one in general
uses numeric approximations.

A certified solution provides a bound on
the error of the approximations in order to
separate the different solutions.

Algebraic representation

Several different ways (we talk about them).

All boil down to a representation of the
solution set by univariate equations.

Then compute a numerical approximation of
the solutions by solving this univariate system.

#2
Numerical solving – quick & dirty

One can use general solvers for non-linear systems.

Problems

▷ In general one cannot find all solutions.

▷ If the method does not find a solution there is no
certificate that there really exists no solution.

Notably mentions

▷ Newton’s method (fast if we start near a solution)

▷ Optimization (meeh)

Homotopy continuation method

Semi-numerical, supposes m = n.

The algorithm consists of four main steps:

Step 1

An upper bound on the number of
solutions is computed.

This step is critical, the bound B

should be as sharp as possible.

Step 2

Another polynomial system

g1 = 0, . . . , gn = 0

is generated with exactly B

easily computable solutions.

Step 3

We construct a homotopy between both systems:

(1− t)g1 + tf1 = 0, . . . , (1− t)gn + tfn = 0.

Not only straight lines, but also other paths,
in order to avoid singularities and other trouble.

Step 4

Now we follow the solutions of the gis (t = 0)

to the fis (t = 1).

If tk < tl then we get the solutions for t = tl from
those for tk using Newton’s method.

Difficult task: How to choose tl − tk?

▷ If too large, convergence is too slow, even jumps
from one solution path to a different one is possible.

▷ If too small, then too many steps may slow
down the computation.

There is a recent paper by Verschelde
on using parallel approaches.

Main idea

Different solution paths are
independent of each other.

#3
Algebraic representations of solutions

A triangular set is a

non-empty set T = {g1, . . . , gs} ⊂ K [x1, . . . , xn] such that

▷ no gi is constant,
▷ all main variables are different,
▷ |T | ≤ n.

(The main variable mvar(g) of a poly g is the greatest
appearing variable.)

A regular chain

T = {g1, . . . , gs} is a triangular set such that

▷ mvar(g1) < . . . < mvar(gs).
▷ Let h =

∏s
i=1 lm(gi). Then resultant(h, T) ̸= 0

where each internal resultant is computed w.r.t.
the main variable of gi.

Main idea by Kalkbrenner

Every irreducible variety is uniquely determined by
one of its generic points.

Regular chains give us exactly these generic points.

Example

Take R = Q[x, y, z] such that x < y < z.

Then T =
{
y2 − x2, y(z− x)

}
is a

triangular set and a regular chain.

Two generic points given by T are (t, t, t) and
(t,−t, t) for t transcendental over Q.

Thus we have two irreducible components:
{y− x, z− x} and {y+ x, z− x}.

Note

y is the content of the second polynomial
of T and can be removed.

The dimension of each component is one,
the number of free variables.

Let T be a regular chain.

The quasi-component of T : W(T) = V(T) \ V(h).

Corresponding algebraic structure:
The saturated ideal sat(T) = (T) : h∞.

We have W(t) = V(sat(T)).

Some properties of a regular chain T :

▷ sat(T) is an unmixed ideal of dimension n− |T |.

▷ sat (T ∩ K[x1, . . . , xi]) = sat(T) ∩ K[x1, . . . , xi].

▷ A triangular set is a regular chain iff
it is Ritt characteristic set of its saturated ideal.

Triangular decomposition of a polynomial system P:

Kalkbrenner style, lazy decomposition:√
(P) = ∩k

i=1

√
sat(Ti).

Lazard style, describe all zeroes:

V(P) = ∪k
i=1W(Ti).

Zero-dimensional regular chains

Sequence of polys g1(x1), g2(x1, x2), . . . , gn(x1, . . . , xn)

such that for all 1 ≤ i ≤ n

▷ gi poly in x1, . . . , xi such that dxi := degxi gi > 0.

▷ Coefficient of xdxi

i is a poly in x1, . . . , xi−1

that has no common zero with g1, . . . , gi−1.

Thus we have a triangular system

g1(x1) = 0

g2(x1, x2) = 0

. . .
gn(x1, . . . , xn) = 0.

Solve first equation, make thus second univariate, . . .

Working over a finite field this is wonderful.

Over the rationals?

Problem 1

Coefficients might explode.

Idea

Equiprojectable decomposition by Dahan and Schost

▷ Bound on coefficients w.r.t. size of the input system.

▷ Depends only on choice of coordinates.

▷ Allows modular computation.

Problem 2

Solving univariate polys with approximate coefficients
is quite unstable.

Ideas

Get regular chains in special form: shape lemma.

Use rational univariate representation starting
from a general regular chain or a Gröbner basis.

Shape lemma
Up to a linear change of coordinates any
zero-dimensional radical ideal I has a
LEX Gröbner basis in shape position, i.e.

G = {x1 − h1(xn), . . . , xn−1 − hn−1(xn), hn(xn)},

such that

▷ D = dimK (R/I),
▷ deghn = D and
▷ deghi < D for all 1 ≤ i < n.

Rational univariate representation (RUR) by Rouillier

Connected to the shape lemma.

Uses separating variable t, a linear combination
of the other variables.

We get a system

h(t) = 0,

x1 = h1(t)/q(t),

. . .
xn = hn(t)/q(t),

where D = degh and degq,deghi < D.

Example

Let P =
{
x2 − 1, (x− 1)(y− 1), y2 − 1

}
.

Besides λx, λy, and λ(x+ y) we can use any
linear combination of x and y as separating variable.
For example, take t = x−y

2
. Then we get as RUR

t3 − t = 0, x = t2+2t−1
3t2−1

, y = t2−2t−1
3t2−1

.

Properties of a RUR

▷ Only defined in the zero-dimensional case.

▷ Only finitely many linear combinations do not lead to a
separating variable.

▷ Once a separating variable is chosen the corresponding
RUR exists and is unique.

▷ 1-to-1 correspondence between roots of h and solutions
of the system. (multiplicities coincide; triangular decom-
positions in general do not preserve this information.)

▷ If h has no multiple root then q = h ′.

Factorizing h gives a RUR for each irreducible factor.

We get a prime decomposition
i.e. primary decomposition of the radical.

Especially if P has a high multiplicity we
thus get an output with much smaller coefficients.

Getting a RUR from a LEX Gröbner basis:

If I is radical, take smallest variable from
LEX GB as separating variable t.
Check that h(t) is squarefree and get a RUR.

In the general case, there also exist algorithms.

If the separating variable is already known and
if the multiplication matrices are already given
then we can compute a RUR in O

(
D3 + nD2

)
.

#4
Numerical solving once having the RUR

Seems easy, but evaluating one poly at the roots of
another one is highly unstable.

Compute roots of h with high precision.
(This may change for different roots).

▷ Aberth’s method,

▷ Laguerre’s method (Singular),

▷ other improved algorithms by Rouillier, Zimmermann, etc.,

▷ other algorithms I know nothing about.

Laguerre’s method

Find approximation for one root of a polynomial f(x) of degree d:

Initial guess z0.

For k = 0, 1, 2, . . . , some upper bound

If f(zk) is small enough, exit loop.

G = f ′(zk)/f(zk).

H = G2 − f ′′(zk)/f(zk).

a = d/
(
G±

√
(d− 1)(dH−G2)

)
(Choose sign to get

bigger absolute value of denominator.)

zk+1 = zk − a.

Aberth’s method

Find approximation for all roots of a polynomial f(x) ⊂ C[x1, . . . , xn]
of degree d simultaneously:

Compute upper and lower bounds of absolute values
for the d roots from the coefficients of the polynomial.

Now pick randomly or evenly distributed distinct complex
numbers z1, . . . , zd with absolute values within the same bounds.

For some number of iterations / until values are small enough do:

For current approximations z1, . . . , zd compute

wk = −

f(zk)

f ′(zk)

1−
f(zk)

f ′(zk)
·
∑

l ̸=k
1

zk−zl

.

Calculate next approximations z ′k = zk +wk for all 1 ≤ k ≤ d.

Both methods share the following properties:

If z is a simple root then convergence is cubically.

Over a finite field enumerating all the roots can be
done in ~O(D).

In characteristic 0 finding an approximation of
all real roots can also be done in ~O(D).

Overall complexity of multivariate solving lies in the
computation of a LEX Gröbner basis resp. a RUR.

#5
How to get the RUR / LEX Gröbner basis in shape position

F4 Algorithm for computing DRL Gröbner basis

gb package, plain C code

GB.jl for OSCAR

Start your julia session. Then

//Load the GB.jl library, also loads Singular.jl.
using GB

// Next we define a ring R of characteristic 2ˆ31-1
// with DRL order and the ideal I in R generated by the
// cyclic generators with 10 variables.
R,I = GB.cyclic_10(2ˆ31-1, :degrevlex)

// Compute Groebner basis G for I using standard
// settings of GB’s F4 implementation.
G = Gb.f4(I)

// Same computation, but with specialized setting:
// hash table size = 2ˆ21, 8 threads,
// max. 2500 s-polynomials, probabilistic linear algebra
G = Gb.f4(I, 21, 8, 2500, 42)

// Further process G using Singular stuff
H = Singular.fglm(G, :lex) // TODO as a first step?

Magma / Maple performance for 31-bit prime fields
using probabilistic linear algebra for reduction.

Take linear combinations

Add new pivots if found

Stop at first zero reduction

Take linear combinations

Add new pivots if found

Stop at first zero reduction

Take linear combinations

Add new pivots if found

Stop at first zero reduction

Take linear combinations

Add new pivots if found

Stop at first zero reduction

Todo

Implementation over Q

Multimodular implementation

Conversion from DRL to LEX Gröbner basis
using the FGLM algorithm.

Complexity: O
(
nD3

)

Use zero-dimensional structure of R/I.
DRL Gröbner basis gives us a finite
basis B for R/I as vector space.

x

y

1 2 3 4 5 6

1

2

3

4

Step 1

Generate multiplication matrices

Mxi : R/I→ R/I, p 7→ xip

where reduction is done w.r.t. the DRL Gröbner basis.

We have O(nD) matrix-vector products of size D×D

times D× 1, thus a complexity of O
(
nD3

)
for this step.

Step 2

Test linear dependency of O(nD) vectors of size D× 1,
done in O

(
nD3

)
arithmetic operations:

Add 1 to B ′ and to C. Multiply 1 by all variables, add them to L.

Take m ∈ L minimal w.r.t. LEX and reduce m w.r.t. G.

▷ If m is linearly independent w.r.t. C

then add m to B ′, m to C and add multiples of m to L.

▷ If m is linearly dependent w.r.t. C then m−
∑

i λibi = 0,
i.e. m−

∑
i λibi ∈ I. Thus add m−

∑
i λibi to G ′.

Method by Mourrain, Telen and van Barel (2018)

They propose a new method for constructing the
multiplication matrices.

Allows finite precision computation.

Gröbner bases are unstable, border bases need a
good initial choice of basis taking global numerical
properties into account.

Idea of truncated normal forms.

Setting

Let I = ⟨f1, . . . , fm⟩ ⊂ R = C[x1, . . . , xn] be zero-dimensional,
say dimC(R/I) = D.

Let V,W be finite dimensional vector spaces of R such that
V → CD is surjective and xiW ⊂ V for all i.

Denote

ϕI : V1 × . . . × Vm → V,

(q1 , . . . , qm) 7→ ∑m
i=1 qifi.

such that fiVi ⊂ V for all i.

Algorithm

Compute ϕI and let N← ker(ϕT
I)

T .

Choose h = h0 +
∑n

i=1 hixi such that hW ⊂ V.

Set N0 : W 7→ N(hw) for w ∈ W.

N ′ ← an invertible submatrix of N0.

B← monomials corresponding to columns of N ′.
(This gives us an isomorphism between the basis B and R/I.)

For i = 1, . . . , n do

Ni ← columns of N corresponding to xiB.

Mxi ← (N ′)−1
Ni.

Return (Mx1 , . . . ,Mxn).

N ′ must be chosen such that an inverse (last step)
can be computed accurately.

Use column pivoted QR factorization on N0.⇒ We get a monomial basis with good numerical
properties.

Comparison to GB approach

Mourrain et al Gröbner bases
Construct ϕI and Compute reduced DRL GB G

compute N. with induced normal form NF.

QR factorization with pivoting Find a normal set B from G.
on N|W to get N ′ corresponding
to a basis B for R/I.

Compute Ni and set Compute multiplication matrices
Mxi = (N ′)−1Ni. Mxi by applying NF to xiB.

Thanks

Questions? Remarks?

