An Introduction on

Polynomial System Solving

41

Setting and basic properties

System P of polynomial equations
f] :O)...,fm:O
where f; € k[xq,...,x,] for some field k.

Throughout the talk we (hopefully) assume
m equations in n variables.

Solutions? Go to algebraic closure K of k

Let I = (f1,...,fm) C R:=Klx1,...,xn].

Compute
V(I) = {zeK"|fi(z) =0fori=1,...,m}
= {ze K" |f(z) =0Vfel}.

P is inconsistent if it has no solution.

P is overdetermined if m > n.

Not all overdetermined systems are inconsistent, e.g.
P = (x*—1=0,x*—1=0) has solution x = 1.

P is underdetermined if m < n.
An underdetermined system is either inconsistent
or it has infinitely many solutions.

P is positive-dimensional if it has
infinitely many solutions.

P is zero-dimensional if it has
finitely many solutions.

(Corresponds to dim V(I) =0.)

Let P be zero-dimensional and m = n:

Bézout’s theorem gives us:
deg f; = di = at most [[, d; solutions.

Bound is sharp and exponential in number
of variables.

In general: solving is difficult.

What does solving mean?

If P is positive-dimensional then counting solutions

is meaningless.

Try to find a description of the solutions from which
we can easily extract the relevant data.

Algebraic geometry, here we go!

“Does P over QQ has a finite number of real solutions?

If so, compute them."”

Cylindrical algebraic decomposition (CAD):

Complexity: doubly exponential in n.

A semi-algebraic set / cell is a finite union of subsets of R™
(R is a real closed field) defined by a finite sequence of
polynomial equations or inequalities.

A CAD is a decomposition of R"™ into connected semi-algebraic
sets on which each polynomial has constant sign (+,—,0).

When projecting 7t: R™ — R™ ¥ then for cells C and D,
either 71(C) = n(D) or (C) N7t(D) = 0.

= Images of 7 give CAD of R

Algorithmic idea

Sequence of projections R* — R — ... = R.

Take f =[], fi, let g = ged(f,) (w.r.t. xn).
Zeroes of g and intersections of f; give cell boundaries
(no local variation of f = 0 when perturbing x;).

Zeroes of univariate polynomials provide critical points for
cell decomposition of R in zero- and one-dimensional cells.

Lift them back up, get a cylinder of cells from R in R2.
Go on till R™.

Let's restrict to zero-dimensional systems in the following.

Solving means to compute all solutions.

There are two main ways to output the solutions:

Numerical representation

For real /complex solutions one in general
uses numeric approximations.

A certified solution provides a bound on
the error of the approximations in order to
separate the different solutions.

Algebraic representation
Several different ways (we talk about them).

All boil down to a representation of the
solution set by univariate equations.

Then compute a numerical approximation of
the solutions by solving this univariate system.

42

Numerical solving — quick & dirty

One can use general solvers for non-linear systems.

Problems
> In general one cannot find all solutions.

> If the method does not find a solution there is no
certificate that there really exists no solution.

Notably mentions
> Newton's method (fast if we start near a solution)

> Optimization (meeh)

Homotopy continuation method
Semi-numerical, supposes m = n.

The algorithm consists of four main steps:

Step 1
An upper bound on the number of

solutions is computed.

This step is critical, the bound B
should be as sharp as possible.

Step 2

Another polynomial system

g1 =0,...,gn =0

is generated with exactly B
easily computable solutions.

Step 3

We construct a homotopy between both systems:
(1—t)gy +tf1 =0,...,(1 —t)gn +tf, = 0.

Not only straight lines, but also other paths,
in order to avoid singularities and other trouble.

Step 4

Now we follow the solutions of the gis (t = 0)
to the fis (t=1).

If tx < t; then we get the solutions for t = t; from
those for tx using Newton's method.

Difficult task: How to choose t; — ti?

> If too large, convergence is too slow, even jumps
from one solution path to a different one is possible.

> If too small, then too many steps may slow
down the computation.

There is a recent paper by Verschelde
on using parallel approaches.

Main idea

Different solution paths are
independent of each other.

43

Algebraic representations of solutions

A triangular set is a
non-empty set T ={g1,...,9s} C K[x1,...,%n] such that
> no g; is constant,

> all main variables are different,

> |T| <n.

(The main variable mvar(g) of a poly g is the greatest
appearing variable.)

A regular chain

T ={qg1,...,9gs} is a triangular set such that

> mvar(gr) < ... < mvar(gs).

> Let h = [;_;Im(gi). Then resultant(h,T) # 0
where each internal resultant is computed w.r.t.
the main variable of g;.

Main idea by Kalkbrenner

Every irreducible variety is uniquely determined by
one of its generic points.

Regular chains give us exactly these generic points.

Example

Take R = Q[x,y, z] such that x <y < z.

Then T = {y —x%y(z—x } is a
triangular set and a regular chain.

Two generic points given by T are (t,t,t) and
(t,—t, t) for t transcendental over Q.

Thus we have two irreducible components:
{y—x,z—x} and {y + x,z — x}.
Note

y is the content of the second polynomial
of T and can be removed.

The dimension of each component is one,
the number of free variables.

Let T be a regular chain.
The quasi-component of T: W(T) = V(T) \ V(h).

Corresponding algebraic structure:
The saturated ideal sat(T) = (T) : h*°.

We have W(t) = V(sat(T)).

Some properties of a regular chain T:

> sat(T) is an unmixed ideal of dimension n — |T]|.
> sat (T N K[xq,...,xi]) =sat(T) N Klxq,...,x4l.

> A triangular set is a regular chain iff
it is Ritt characteristic set of its saturated ideal.

Triangular decomposition of a polynomial system P:

Kalkbrenner style, lazy decomposition:
\/ (P ﬂ 1v/sat(Tq).
Lazard style, describe all zeroes:

V(P) = UL W(Ty).

Zero-dimensional regular chains

Sequence of polys g1(x1), g2(X1,X2)y+ .+, Gn(X1y. ..y Xn)
such that forall 1 <i<n

> gi poly in x1,...,%; such that dy, := deg,, gi > 0.

- dy; . .
> Coefficient of x; " is a poly in x1,...,%{1
that has no common zero with gi,...,gi—1.

Thus we have a triangular system

gi1(x1) =0
g2(x1,%x2) =0

gn(X1y...yxn) =0.

Solve first equation, make thus second univariate, ...

Working over a finite field this is wonderful.

Over the rationals?

Problem 1

Coefficients might explode.

Idea

Equiprojectable decomposition by Dahan and Schost
> Bound on coefficients w.r.t. size of the input system.
> Depends only on choice of coordinates.

> Allows modular computation.

Problem 2

Solving univariate polys with approximate coefficients
is quite unstable.

Ideas
Get regular chains in special form: shape lemma.

Use rational univariate representation starting
from a general regular chain or a Grobner basis.

Shape lemma

Up to a linear change of coordinates any
zero-dimensional radical ideal I has a
LEX Grobner basis in shape position, i.e.

G={x1—h (Xn)> e oyXn—1 — hn (Xn)> hn(xn)}y
such that

> D = dimg (R/I),
> degh, =D and
>deghy <D forall 1 <i<n.

Rational univariate representation (RUR) by Rouillier

Connected to the shape lemma.

Uses separating variable t, a linear combination
of the other variables.

We get a system

h(t) =0,
x1 = hy(t)/q(t),

Yo = ha(8)/q(1),

where D =degh and deg q,degh; < D.

Example
Let P ={x*—1,(x—1)(y—1),y* = 1}.

Besides Ax, Ay, and A(x +y) we can use any
linear combination of x and y as separating variable.
For example, take t = 5. Then we get as RUR

3 ¢ 242t 221
v —t=0x=5i3.Y= 377

Properties of a RUR

> Only defined in the zero-dimensional case.

> Only finitely many linear combinations do not lead to a
separating variable.

> Once a separating variable is chosen the corresponding
RUR exists and is unique.

> 1-to-1 correspondence between roots of h and solutions
of the system. (multiplicities coincide; triangular decom-
positions in general do not preserve this information.)

> If h has no multiple root then ¢ = h'.

Factorizing h gives a RUR for each irreducible factor.

We get a prime decomposition
i.e. primary decomposition of the radical.

Especially if P has a high multiplicity we
thus get an output with much smaller coefficients.

Getting a RUR from a LEX Grébner basis:

If T is radical, take smallest variable from
LEX GB as separating variable t.
Check that h(t) is squarefree and get a RUR.

In the general case, there also exist algorithms.

If the separating variable is already known and
if the multiplication matrices are already given
then we can compute a RUR in O (D3 +nD2).

#4

Numerical solving once having the RUR

Seems easy, but evaluating one poly at the roots of
another one is highly unstable.

Compute roots of h with high precision.
(This may change for different roots).

> Aberth’s method,
> Laguerre’s method (Singular),
> other improved algorithms by Rouillier, Zimmermann, etc.,

> other algorithms | know nothing about.

Laguerre’s method

Find approximation for one root of a polynomial f(x) of degree d:
Initial guess zg.
For k=0,1,2,..., some upper bound

If f(zy) is small enough, exit loop.

G = f'(zx)/f(zx).

H = G —"(z) /f(z).

a=d/ (G +/(d—1)(dH — GZ)) (Choose sign to get

bigger absolute value of denominator.)

Zk+1 = 2 — Q.

Aberth’s method

Find approximation for all roots of a polynomial f(x) C C[x1,...,Xn]
of degree d simultaneously:

Compute upper and lower bounds of absolute values
for the d roots from the coefficients of the polynomial.

Now pick randomly or evenly distributed distinct complex
numbers z1,...,zq with absolute values within the same bounds.

For some number of iterations / until values are small enough do:

For current approximations z1,...,z4 compute
f(zy)
lzy)

Wy = —— =

1—

(zy) 1
o) Sk By

Calculate next approximations z| = zy +wy for all 1 <k < d.

Both methods share the following properties:

If z is a simple root then convergence is cubically.

Over a finite field enumerating all the roots can be
done in O(D).

In characteristic O finding an approximation of
all real roots can also be done in O(D).

Overall complexity of multivariate solving lies in the
computation of a LEX Grébner basis resp. a RUR.

#5
How to get the RUR / LEX Grobner basis in shape position

F4 Algorithm for computing DRL Grébner basis

gb package, plain C code
GB.jl for OSCAR

Start your julia session. Then

//Load the GB.jl library, also loads Singular.jl.
using GB

// Next we define a ring R of characteristic 2731-1

// with DRL order and the ideal I in R generated by the
// cyclic generators with 10 variables.

R,I = GB.cyclic_10(2"31-1, :degrevlex)

// Compute Groebner basis G for I using standard
// settings of GB’s F4 implementation.
G = Gb.f4(I)

// Same computation, but with specialized setting:

// hash table size = 2721, 8 threads,

// max. 2500 s-polynomials, probabilistic linear algebra
G = Gb.f4(I, 21, 8, 2500, 42)

// Further process G using Singular stuff
H = Singular.fglm(G, :lex) // TODO as a first step?

Magma / Maple performance for 31-bit prime fields
using probabilistic linear algebra for reduction.

= o 1y
5 B 4 i3 :24.:«
sz ik i
A s

= =]

2 > H

iemlin =

==, - =

5555 A P——
et 2 L
P 3 .
e W am @ aisap
s ATy

comm e 1 v -

i

v ..
=5 1555 L
1AW
s
il._.'l_ 31 38° § :
oAl

el

Take linear combinations

Take linear combinations

Add new pivots if found

Take linear combinations

Add new pivots if found {

Stop at first zero reduction —/

Todo

Implementation over Q

Multimodular implementation

Conversion from DRL to LEX Grébner basis
using the FGLM algorithm.

Complexity: O (nD?)

Use zero-dimensional structure of R/I.
DRL Grébner basis gives us a finite
basis B for R/I as vector space.

Step 1

Generate multiplication matrices
My, : R/T = R/L, P — Xip

where reduction is done w.r.t. the DRL Grobner basis.

We have O(nD) matrix-vector products of size D x D
times D x 1, thus a complexity of O (nD3) for this step.

Step 2

Test linear dependency of O(nD) vectors of size D x 1,
done in O (nD3) arithmetic operations:

Add 1 to B’ and to C. Multiply 1 by all variables, add them to L.

Take m € L minimal w.r.t. LEX and reduce m w.r.t. G.

> If m is linearly independent w.r.t. C
then add m to B/, m to C and add multiples of m to L.

> If ™ is linearly dependent w.r.t. C then m —) ;Ajb; = 0,
ie. m—) Ab; € I. Thus add m—) ;Ajb; to G'.

Method by Mourrain, Telen and van Barel (2018)

They propose a new method for constructing the
multiplication matrices.

Allows finite precision computation.

Grobner bases are unstable, border bases need a
good initial choice of basis taking global numerical
properties into account.

Idea of truncated normal forms.

Setting
Let [= (f1,...,fm) C R=Cl[xq,...,Xn] be zero-dimensional,
say dim¢(R/I) = D.

Let V, W be finite dimensional vector spaces of R such that
V — CP is surjective and ;W C V for all i.

Denote

dbr: Vi o x ..o x Vg = V,
(@1 5 oo dm) = X qifi
such that f;V; C V for all 1i.

Algorithm

Compute ¢r and let N « ker(d)IT)T.

Choose h = hg + Y ', hix; such that hW C V.
Set Np : W — N(hw) forw € W.

N’ < an invertible submatrix of Ny.

B + monomials corresponding to columns of N'.
(This gives us an isomorphism between the basis B and R/I.)

Fori=1,...,ndo
N; < columns of N corresponding to x;B.
My, — (NN

Return (My,,..., My,).

N’ must be chosen such that an inverse (last step)
can be computed accurately.

Use column pivoted QR factorization on Ny.

= We get a monomial basis with good numerical
properties.

Comparison to GB approach

Mourrain et al

Grobner bases

Construct ¢ and
compute N.

Compute reduced DRL GB G
with induced normal form NF.

QR factorization with pivoting
on Nl to get N’ corresponding
to a basis B for R/L.

Find a normal set B from G.

Compute N; and set
My, = (N/)7IN;.

Compute multiplication matrices
M, by applying NF to x;B.

T hanks

Questions? Remarks?

