Λ Ι . Ι . . .

Polynomial System Solving

An Introduction on

#1

Setting and basic properties

System ${\mathcal P}$ of polynomial equations

$$f_1 = 0, ..., f_m = 0$$

where $f_i \in k[x_1, \dots, x_n]$ for some field k.

Throughout the talk we (hopefully) assume m equations in n variables.

Solutions? Go to algebraic closure K of k

Let
$$I = \langle f_1, \dots, f_m \rangle \subset R := K[x_1, \dots, x_n].$$

Compute

$$V(I) = \{z \in K^n \mid f_i(z) = 0 \text{ for } i = 1, ..., m\}$$

= $\{z \in K^n \mid f(z) = 0 \ \forall f \in I\}.$

 \mathcal{P} is **inconsistent** if it has no solution.

 \mathcal{P} is **overdetermined** if m > n.

Not all overdetermined systems are inconsistent, e.g.

$$P = (x^3 - 1 = 0, x^2 - 1 = 0)$$
 has solution $x = 1$.

 \mathcal{P} is underdetermined if $\mathfrak{m} < \mathfrak{n}$.

An underdetermined system is either inconsistent or it has infinitely many solutions.

 ${\cal P}$ is **positive-dimensional** if it has infinitely many solutions.

 \mathcal{P} is **zero-dimensional** if it has finitely many solutions. (Corresponds to dim V(I) = 0.)

Let \mathcal{P} be zero-dimensional and $\mathfrak{m}=\mathfrak{n}$:

Bézout's theorem gives us:

 $\text{deg } f_i = d_i \Rightarrow \text{at most } \prod_{i=1}^m d_i \text{ solutions.}$

Bound is sharp and exponential in number of variables.

In general: **solving is difficult**.

What does solving mean?

If $\mathcal P$ is **positive-dimensional** then counting solutions is meaningless.

Try to find a description of the solutions from which we can **easily** extract the **relevant data**.

Algebraic geometry, here we go!

"Does $\mathcal P$ over $\mathbb Q$ has a finite number of **real** solutions? If so, compute them."

Cylindrical algebraic decomposition (CAD):

Complexity: doubly exponential in n.

A semi-algebraic set / cell is a finite union of subsets of \mathcal{R}^n (\mathcal{R} is a real closed field) defined by a finite sequence of polynomial equations or inequalities.

A CAD is a decomposition of \mathbb{R}^n into connected semi-algebraic sets on which each polynomial has constant sign (+, -, 0).

When projecting $\pi: \mathcal{R}^n \to \mathcal{R}^{n-k}$ then for cells C and D, either $\pi(C) = \pi(D)$ or $\pi(C) \cap \pi(D) = \emptyset$.

 \Rightarrow Images of π give CAD of \mathcal{R}^{n-k} .

Algorithmic idea

Sequence of **projections** $\mathcal{R}^n \to \mathcal{R}^{n-1} \to \ldots \to \mathcal{R}$.

Take $f = \prod_{i=1}^{m} f_i$, let $g = \gcd(f, f')$ (w.r.t. x_n). Zeroes of g and intersections of f_i give cell boundaries (no local variation of f = 0 when perturbing x_n).

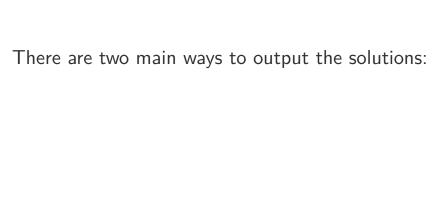
Zeroes of univariate polynomials provide critical points for cell decomposition of $\mathcal R$ in zero- and one-dimensional cells.

Lift them back up, get a cylinder of cells from \mathcal{R} in \mathcal{R}^2 .

Go on till \mathbb{R}^n .

Let's restrict to	zero-dimens	s ional syst	cems in t	the follow	wing.

Solving means to compute all solutions.



Numerical representation

For real/complex solutions one in general uses numeric approximations.

A **certified** solution provides a bound on the error of the approximations in order to separate the different solutions.

Algebraic representation

Several different ways (we talk about them).

All boil down to a representation of the solution set by **univariate** equations.

Then compute a numerical approximation of the solutions by solving this univariate system.

#2 Numerical solving – quick & dirty

One can use general solvers for non-linear systems.

Problems

- ▷ In general one cannot find all solutions.
- ▷ If the method does not find a solution there is no certificate that there really exists no solution.

Notably mentions

- ▷ Newton's method (fast if we start near a solution)
- ▷ Optimization (meeh)

Homotopy continuation method

Semi-numerical, supposes m = n.

The algorithm consists of four main steps:

An **upper bound** on the number of solutions is computed.

This step is critical, the bound B should be as sharp as possible.

Another polynomial system

$$g_1=0,\ldots,g_n=0$$

is generated with exactly B easily computable solutions.

We construct a **homotopy** between both systems:

$$(1-t)g_1 + tf_1 = 0, \dots, (1-t)g_n + tf_n = 0.$$

Not only straight lines, but also other paths, in order to avoid singularities and other trouble.

Now we **follow** the solutions of the $g_i s$ (t=0) to the $f_i s$ (t=1).

If $t_k < t_l$ then we get the solutions for $t = t_l$ from those for t_k using **Newton**'s method.

Difficult task: How to choose $t_l - t_k$?

- ▷ If too large, convergence is too slow, even jumps from one solution path to a different one is possible.
- ▷ If too small, then too many steps may slow down the computation.

There is a recent paper by **Verschelde** on using parallel approaches.

Main idea

Different solution paths are independent of each other.

#3Algebraic representations of solutions

A triangular set is a

non-empty set $T = \{g_1, \dots, g_s\} \subset K[x_1, \dots, x_n]$ such that

- \triangleright no g_i is constant,
- ▷ all main variables are different,
- $\triangleright |T| \leq n$.

(The main variable mvar(g) of a poly g is the greatest appearing variable.)

A regular chain

 $T = \{q_1, \dots, q_s\}$ is a triangular set such that

- $ightharpoonup \mathsf{mvar}(g_1) < \ldots < \mathsf{mvar}(g_s).$
- ▷ Let $h = \prod_{i=1}^{s} Im(g_i)$. Then resultant(h, T) \neq 0 where each internal resultant is computed w.r.t. the main variable of g_i .

Main idea by Kalkbrenner

Every irreducible variety is uniquely determined by one of its generic points.

Regular chains give us exactly these generic points.

Example

Take $R = \mathbb{Q}[x, y, z]$ such that x < y < z.

Then $T = \{y^2 - x^2, y(z - x)\}$ is a triangular set and a regular chain.

Two generic points given by T are (t, t, t) and (t, -t, t) for t transcendental over \mathbb{Q} .

Thus we have two irreducible components: $\{y-x,z-x\}$ and $\{y+x,z-x\}$.

Note

y is the content of the second polynomial of T and can be removed.

The dimension of each component is one, the number of free variables.

Let T be a regular chain.

The quasi-component of T: $W(T) = V(T) \setminus V(h)$.

Corresponding algebraic structure:

The saturated ideal $sat(T) = (T) : h^{\infty}$.

We have W(t) = V(sat(T)).

Some properties of a regular chain T:

 \triangleright sat(T) is an unmixed ideal of dimension n - |T|.

 $\triangleright \, \mathsf{sat} \, (\mathsf{T} \cap \mathsf{K}[x_1, \dots, x_i]) = \mathsf{sat}(\mathsf{T}) \cap \mathsf{K}[x_1, \dots, x_i].$

▷ A triangular set is a regular chain iff it is *Ritt characteristic set* of its saturated ideal.

Triangular decomposition of a polynomial system \mathcal{P} :

Kalkbrenner style, lazy decomposition:

$$\sqrt{(\mathcal{P})} = \cap_{i=1}^k \sqrt{\mathsf{sat}(T_i)}.$$

Lazard style, describe all zeroes:

$$V(\mathcal{P}) = \cup_{i=1}^k W(T_i).$$

Zero-dimensional regular chains

Sequence of polys $g_1(x_1), g_2(x_1, x_2), \ldots, g_n(x_1, \ldots, x_n)$ such that for all 1 < i < n

 $\triangleright g_i$ poly in x_1, \ldots, x_i such that $d_{x_i} := \deg_{x_i} g_i > 0$.

 \triangleright Coefficient of $x_i^{d_{x_i}}$ is a poly in x_1, \ldots, x_{i-1} that has no common zero with g_1, \ldots, g_{i-1} .

Thus we have a triangular system

$$g_1(x_1) = 0$$

 $q_2(x_1, x_2) = 0$

 $g_n(x_1,\ldots,x_n)=0.$

Solve first equation, make thus second univariate, ...

Working over a finite field this is wonderful.

Over the rationals?

Problem 1

Coefficients might explode.

Idea

Equiprojectable decomposition by Dahan and Schost

- ▷ Bound on coefficients w.r.t. size of the input system.
- ▷ Depends only on choice of coordinates.
- ▷ Allows modular computation.

Problem 2

Solving univariate polys with approximate coefficients is quite unstable.

Ideas

Get regular chains in special form: shape lemma.

Use **rational univariate representation** starting from a general regular chain or a Gröbner basis.

Shape lemma

Up to a linear change of coordinates any zero-dimensional radical ideal I has a LEX Gröbner basis in **shape position**, i.e.

$$G = \{x_1 - h_1(x_n), \dots, x_{n-1} - h_{n-1}(x_n), h_n(x_n)\},\$$

such that

- $\triangleright D = \dim_{K} (R/I),$ $\triangleright \deg h_{n} = D \text{ and }$
- \triangleright deg $h_i < D$ for all $1 \le i < n$.

Rational univariate representation (RUR) by Rouillier

Connected to the shape lemma.

Uses **separating variable** t, a linear combination of the other variables.

We get a system

$$h(t) = 0,$$

 $x_1 = h_1(t)/q(t),$

$$x_n = h_n(t)/q(t)$$

where $D = \deg h$ and $\deg q, \deg h_i < D$.

Example

Let
$$\mathcal{P} = \{x^2 - 1, (x - 1)(y - 1), y^2 - 1\}.$$

Besides λx , λy , and $\lambda (x + y)$ we can use any linear combination of x and y as separating variable. For example, take $t = \frac{x-y}{2}$. Then we get as RUR

$$t^3 - t = 0$$
, $x = \frac{t^2 + 2t - 1}{3 + 2}$, $y = \frac{t^2 - 2t - 1}{3 + 2}$.

Properties of a RUR

- Doly defined in the zero-dimensional case.
- ▷ Only finitely many linear combinations do **not** lead to a separating variable.
- Once a separating variable is chosen **the** corresponding RUR exists and is unique.
- ▷ 1-to-1 correspondence between roots of h and solutions of the system. (multiplicities coincide; triangular decompositions in general do not preserve this information.)
- \triangleright If h has no multiple root then q = h'.

Factorizing h gives a RUR for each irreducible factor.

We get a **prime decomposition** i.e. primary decomposition of the radical.

Especially if \mathcal{P} has a high multiplicity we thus get an output with much smaller coefficients.

Getting a RUR from a LEX Gröbner basis:

If I is **radical**, take smallest variable from LEX GB as separating variable t. Check that h(t) is squarefree and get a RUR.

In the general case, there also exist algorithms.

If the separating variable is already known **and**

if the separating variable is already known **and** if the multiplication matrices are already given

then we can compute a RUR in $O(D^3 + nD^2)$.

#4

Numerical solving once having the RUR

Seems easy, but evaluating one poly at the roots of another one is highly unstable.

Compute roots of h with high precision. (This may change for different roots).

- ▶ Aberth's method,
- ▶ Laguerre's method (Singular),
- $\,\triangleright\,$ other improved algorithms by Rouillier, Zimmermann, etc.,
- other algorithms I know nothing about.

Laguerre's method

Find approximation for **one** root of a polynomial f(x) of degree d:

Initial guess z_0 .

For $k = 0, 1, 2, \dots$, some upper bound

If $f(z_k)$ is small enough, exit loop.

$$G = f'(z_k)/f(z_k)$$
.

$$H = G^2 - f''(z_k)/f(z_k)$$
.

$$\alpha=d/\left(G\pm\sqrt{(d-1)(dH-G^2)}\right)$$
 (Choose sign to get bigger absolute value of denominator.)

$$z_{k+1} = z_k - a$$
.

Aberth's method

Find approximation for **all** roots of a polynomial $f(x) \subset \mathbb{C}[x_1, \dots, x_n]$ of degree d simultaneously:

Compute upper and lower bounds of absolute values for the d roots from the coefficients of the polynomial.

Now pick randomly or evenly distributed **distinct** complex numbers $z_1, ..., z_d$ with absolute values within the same bounds.

For some number of iterations / until values are small enough do:

For current approximations z_1, \ldots, z_d compute

$$w_k = -\frac{\frac{f(z_k)}{f'(z_k)}}{1 - \frac{f(z_k)}{f'(z_k)} \cdot \sum_{l \neq k} \frac{1}{z_k - z_l}}.$$

Calculate next approximations $z'_k = z_k + w_k$ for all $1 \le k \le d$.

Both	methods	share	the	following	properties:

If z is a **simple** root then convergence is **cubically**.

Over a finite field enumerating all the roots can be done in $\tilde{O}(D)$.

In characteristic 0 finding an approximation of all real roots can also be done in $\tilde{O}(D)$.

Overall complexity of multivariate solving lies in the computation of a LEX Gröbner basis resp. a RUR.

 $\ensuremath{\textit{\#5}}$ How to get the RUR / LEX Gröbner basis in shape position

F4 Algorithm for computing DRL Gröbner basis

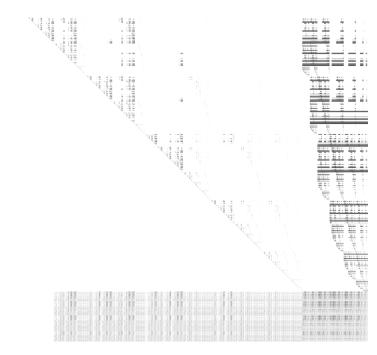
GB.il for OSCAR

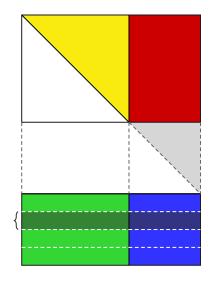
gb package, plain C code

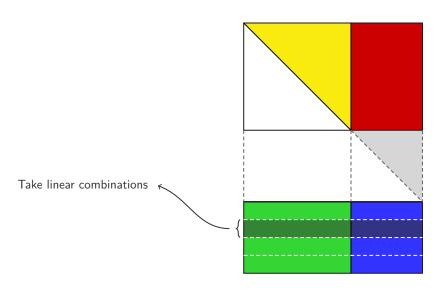
```
Start your julia session. Then
//Load the GB.jl library, also loads Singular.jl.
using GB
// Next we define a ring R of characteristic 2^31-1
// with DRL order and the ideal I in R generated by the
// cyclic generators with 10 variables.
R,I = GB.cyclic_10(2^31-1, :degrevlex)
// Compute Groebner basis G for I using standard
// settings of GB's F4 implementation.
G = Gb.f4(I)
// Same computation, but with specialized setting:
// hash table size = 2^21, 8 threads,
// max. 2500 s-polynomials, probabilistic linear algebra
G = Gb.f4(I, 21, 8, 2500, 42)
// Further process G using Singular stuff
H = Singular.fglm(G, :lex) // TODO as a first step?
```

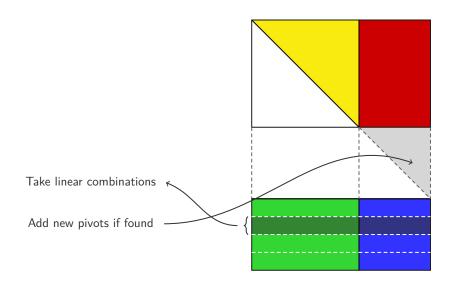
Magma / Maple performance for 31-bit prime fields using probabilistic linear algebra for reduction.

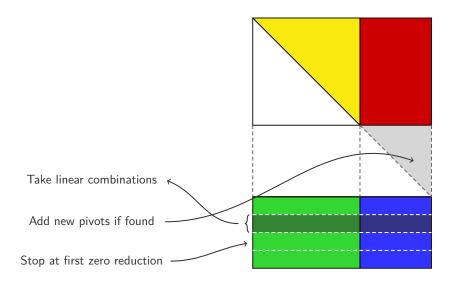
3.4.4.63838383838			14444					400									
4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1111					111					114				
\. \. \. \. \. \. \. \. \. \. \. \. \. \	2323		188					V 40 V F	131				1000				58333
			1144					144									
	111			111	110								1112				
777	0.18.18	3 3 3 1 1 1 1 1		23423	11111		11	1111	1.31	111		8.0	333		18.0	393	233631311
14 54 30 30 40 40 40 40 40 40 40 40 40 40 40 40 40								1811					Hill				
	1111		1111	1111	31 3103			111	131			11				1111	
9111111111111			11.00		110			100									
			1101				10			111		H 10				333	
No. 107 107 1			10.000					444					- 1				
AH HI			1 1 1 1		-												= :
7,111		1 111	1 10 10 100			- 11	-				1	111					II ii
			三														
	4.3.3	4 9 (4)	111			-4,	di.	444					444			- Spi	4.1
	14 :3	i - iii				- 1	110	- 10 -b					-11			-	4.1
	1					- 13	13										4.1
		Will	111					H			-						
		4/11	110							100							
							-					0.00		- 1			
			ALE:					7									
			-	W.				= 1					3.5			30	- 111
				14				110			J.	ij	giá.	1		13.0	1111
				4,	1111	-11	11				19.	11	11 41 44			1144	-
					4	- 3	118	-11-6					a se titl sale			- 1	- 11
						- 11	13					0.01	di			1 10 10 100	
					4	W.	H.	111					HIT			=	
						40	Œ.	111									
							40	urie:					7			=	
									8 :3	11	19	4.5	400	:9	4.0	411	4.5.5
									18	1919		11			33		· 16 yig viça viçan
									- 1	41	- 1	1		-	- 5		
										ંથ,	. 3 . 3	12	12.00		- 3	1,500	111111111
											ч.	11	1111			1111	-
												44,	4 .			-15	
													T.				
														4	111	MII	H
														4,	Œ.	11	111
															wi.	wie	
																40	vienimi
																	4 1 1











Todo

Implementation over Q

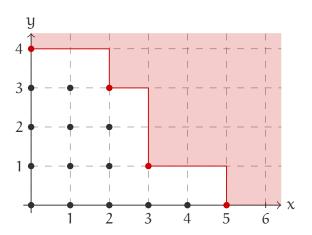
Multimodular implementation

Conversion from DRL to LEX Gröbner basis using the **FGLM** algorithm.

using the **FGLM** algorithm.

Complexity: $O(nD^3)$

Use zero-dimensional structure of R/I. DRL Gröbner basis gives us a **finite** basis B for R/I as vector space.



Step 1

Generate multiplication matrices

$$M_{x_i}:R/I\to R/I,\;\overline{p}\mapsto \overline{x_ip}$$

where reduction is done w.r.t. the DRL Gröbner basis.

We have O(nD) matrix-vector products of size $D \times D$ times $D \times 1$, thus a complexity of $O\left(nD^3\right)$ for this step.

Step 2

Test **linear dependency** of O(nD) vectors of size $D \times 1$, done in $O(nD^3)$ arithmetic operations:

Add 1 to B' and to C. Multiply 1 by all variables, add them to L.

Take $m \in L$ minimal w.r.t. LEX and reduce m w.r.t. G.

- ⊳ If \overline{m} is linearly independent w.r.t. C then add m to B', \overline{m} to C and add multiples of m to L.
- ▷ If \overline{m} is linearly dependent w.r.t. C then $\overline{m \sum_i \lambda_i b_i} = \overline{0}$, i.e. $m \sum_i \lambda_i b_i \in I$. Thus add $m \sum_i \lambda_i b_i$ to G'.

Method by Mourrain, Telen and van Barel (2018)

They propose a new method for constructing the multiplication matrices.

Allows finite precision computation.

Gröbner bases are unstable, border bases need a good initial choice of basis taking global numerical properties into account.

Idea of truncated normal forms.

Setting

Let $I=\langle f_1,\ldots,f_m\rangle\subset R=\mathbb{C}[x_1,\ldots,x_n]$ be zero-dimensional, say $dim_\mathbb{C}(R/I)=D$.

Let V, W be finite dimensional vector spaces of R such that $V \to \mathbb{C}^D$ is surjective and $x_i W \subset V$ for all i.

Denote

such that $f_iV_i\subset V$ for all i.

Algorithm

Compute ϕ_I and let $N \leftarrow \ker(\phi_I^T)^T$.

Choose $h = h_0 + \sum_{i=1}^n h_i x_i$ such that $hW \subset V$.

Set $N_0: W \mapsto N(hw)$ for $w \in W$.

 $N' \leftarrow$ an invertible submatrix of N_0 .

 $B \leftarrow$ monomials corresponding to columns of N'. (This gives us an isomorphism between the basis B and R/I.)

For i = 1, ..., n do

 $N_i \leftarrow \text{columns of } N \text{ corresponding to } x_i B.$

$$M_{x_i} \leftarrow (N')^{-1} N_i$$
.

Return $(M_{x_1}, \ldots, M_{x_n})$.

N' must be chosen such that an **inverse** (last step) can be computed **accurately**.

Use column pivoted **QR factorization** on N_0 .

⇒ We get a monomial basis with good numerical properties.

Comparison to GB approach

Mourrain et al	Gröbner bases
Construct ϕ_I and compute N.	Compute reduced DRL GB G with induced normal form NF.
QR factorization with pivoting on $N _W$ to get N' corresponding to a basis B for R/I .	Find a normal set B from G.
Compute N_i and set $M_{x_i} = (N')^{-1}N_i$.	Compute multiplication matrices M_{x_i} by applying NF to x_iB .

Thanks

Questions? Remarks?