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2. The Zariski Topology

In this chapter we will define a topology on an affine variety X , i. e. a notion of open and closed
subsets of X . We will see that many properties of X can be expressed purely in terms of this topology,
e. g. its dimension or the question whether it consists of several components. The advantage of this
is that these concepts can then easily be reused later in Chapter 5 when we consider more general
varieties — which are still topological spaces, but arise in a slightly different way.

Compared to e. g. the standard topology on subsets of real vector spaces, the properties of our topol-
ogy on affine varieties will be very unusual. Consequently, most concepts and results covered in a
standard introductory course on topology will be trivial or useless in our case, so that we will only
need the very first definitions of general topology. Let us quickly review them here.

Remark 2.1 (Topologies). A topology on a set X is given by declaring some subsets of X to be
closed, such that the following properties hold:

(a) the empty set /0 and the whole space X are closed;

(b) arbitrary intersections of closed sets are closed;

(c) finite unions of closed sets are closed.

Given such a topology on X , a subset U of X is then called open if its complement X\U is closed.
The closure A of a subset A ⊂ X is defined to be the smallest closed subset containing A, or more
precisely the intersection of all closed subsets containing A (which is closed again by (b)).

A topology on X induces a subspace topology on any subset A⊂ X by declaring the subsets of A to
be closed that are of the form A∩Y for a closed subset Y of X (or equivalently the subsets of A to be
open that are of the form A∩U for an open subset U of X). Subsets of topological spaces will always
be equipped with this subspace topology unless stated otherwise. Note that if A is closed itself then
the closed subsets of A in the subspace topology are exactly the closed subsets of X contained in A;
if A is open then the open subsets of A in the subspace topology are exactly the open subsets of X
contained in A.

A map f : X→Y between topological spaces is called continuous if inverse images of closed subsets
of Y under f are closed in X , or equivalently if inverse images of open subsets are open.

Note that the standard definition of closed subsets in Rn (or more generally in metric spaces) that you
know from real analysis satisfies the conditions (a), (b), and (c), and leads with the above definitions
to the well-known notions of open subsets, closures, and continuous functions.

With these preparations we can now define the standard topology used in algebraic geometry.

Definition 2.2 (Zariski topology). Let X be an affine variety. We define the Zariski topology on X
to be the topology whose closed sets are exactly the affine subvarieties of X , i. e. the subsets of the
form V (S) for some S ⊂ A(X). Note that this in fact a topology by (the relative version of) Lemma
1.4 and Example 1.5 (a).

Unless stated otherwise, topological notions for affine varieties (and their subsets, using the subspace
topology of Remark 2.1) will always be understood with respect to this topology.

Remark 2.3. Let X ⊂ An be an affine variety. Then we have just defined two topologies on X :

(a) the Zariski topology on X , whose closed subsets are the affine subvarieties of X ; and

(b) the subspace topology of X in An, whose closed subsets are the sets of the form X ∩Y , with
Y a variety in An.
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These two topologies agree, since the affine subvarieties of X are precisely the affine varieties con-
tained in X , and the intersection of two affine varieties is again an affine variety. Hence it will not
lead to confusion if we consider both these topologies to be the standard topology on X .

Example 2.4 (Topologies on complex varieties). Compared to the classical metric topology in the
case of the ground field C, the Zariski topology is certainly unusual:

(a) The metric unit ball A = {x ∈ A1
C : |x| ≤ 1} in A1

C is clearly closed in the classical topology,
but not in the Zariski topology. In fact, by Example 1.5 (b) the Zariski-closed subsets of A1

are only the finite sets and A1 itself. In particular, the closure of A in the Zariski topology is
all of A1.
Intuitively, we can say that the closed subsets in the Zariski topology are very “small”, and
hence that the open subsets are very “big” (see also Remark 2.16). Any Zariski-closed subset
is also closed in the classical topology (since it is given by equations among polynomial
functions, which are continuous in the classical topology), but as the above example shows
only “very few” closed subsets in the classical topology are also Zariski-closed.

(b) Let f : A1 → A1 be any injective map. Then f is automatically continuous in the Zariski
topology by Example 1.5 (b), since inverse images of finite subsets of A1 under f are again
finite.
This statement is essentially useless however, as we will not define morphisms of affine
varieties as just being continuous maps with respect to the Zariski topology. In fact, this
example gives us a strong hint that we should not do so.

(c) In general topology there is a notion of a product topology: If X and Y are topological spaces
then X ×Y has a natural structure of a topological space by saying that a subset of X ×Y is
open if and only if it is a union of products Ui×Vi for open subsets Ui ⊂ X and Vi ⊂ Y with
i in an arbitrary index set.
With this construction, note however that the Zariski topology of an affine product variety
X×Y is not the product topology: For example, the subset V (x1−x2)= {(a,a) : a∈K}⊂A2

is closed in the Zariski topology, but not in the product topology of A1×A1. In fact, we will
see in Proposition 4.10 that the Zariski topology is the “correct” one, whereas the product
topology is useless in algebraic geometry.

But let us now start with the discussion of the topological concepts that are
actually useful in the Zariski topology. The first ones concern components of
an affine variety: The affine variety X = V (x1x2) ⊂ A2 as in the picture on
the right can be written as the union of the two coordinate axes X1 = V (x1)
and X2 = V (x2), which are themselves affine varieties. However, X1 and X2
cannot be decomposed further into finite unions of smaller affine varieties. The
following notion generalizes this idea. X = X1∪X2

X1

X2

Definition 2.5 (Irreducible and connected spaces). Let X be a topological space.

(a) We say that X is reducible if it can be written as X = X1∪X2 for closed subsets X1,X2 ( X .
Otherwise X is called irreducible.

(b) The space X is called disconnected if it can be written as X = X1 ∪X2 for closed subsets
X1,X2 ( X with X1∩X2 = /0. Otherwise X is called connected.

Remark 2.6. Although we have given this definition for arbitrary topological spaces, we will usually
want to apply the notion of irreducibility only in the Zariski topology. For example, in the classical
topology, the complex plane A1

C is reducible because it can be written as a union of closed subsets
e. g. as

A1
C = {x ∈ C : |x| ≤ 1}∪{x ∈ C : |x| ≥ 1}.

In the Zariski topology however, A1 is irreducible by Example 1.5 (b) (as it should be).
In contrast, the notion of connectedness can be used in the “usual” topology as well and does mean
there what you think it should mean.
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In the Zariski topology, the algebraic characterization of irreducibility and connectedness is the
following.

Proposition 2.7. Let X be a disconnected affine variety, with X = X1 ∪X2 for two disjoint closed
subsets X1,X2 ( X. Then A(X)∼= A(X1)×A(X2).

Proof. As X1∪X2 = X we obtain in A(X)

I(X1)∩ I(X2)
1.18 (c)
= I(X1∪X2) = I(X) = {0}.

On the other hand, from X1∩X2 = /0 we have in A(X)√
I(X1)+ I(X2)

1.18 (c)
= I(X1∩X2) = I( /0) = 〈1〉,

and thus also I(X1)+ I(X2) = 〈1〉. So by the Chinese Remainder Theorem [G3, Proposition 1.14]
we conclude that

A(X)∼= A(X)/I(X1)×A(X)/I(X2),

which by Remark 1.18 (a) is exactly the statement of the proposition. �
02

Proposition 2.8. A non-empty affine variety X is irreducible if and only if A(X) is an integral do-
main.

Proof. As X is non-empty, its coordinate ring A(X) is not the zero ring (which by definition is not
an integral domain).

“⇒”: Assume that A(X) is not an integral domain, i. e. there are non-zero f1, f2 ∈ A(X) such that
f1 f2 = 0. Then X1 = V ( f1) and X2 = V ( f2) are closed, not equal to X (since f1 and f2 are
non-zero), and X1∪X2 =V ( f1)∪V ( f2) =V ( f1 f2) =V (0) = X . Hence X is reducible.

“⇐”: Assume that X is reducible, with X = X1∪X2 for closed subsets X1,X2 ( X . By the bijection
of the relative Nullstellensatz as in Remark 1.18 (b) this means that I(Xi) 6= {0} in A(X)
for i = 1,2, and so we can choose non-zero fi ∈ I(Xi). Then f1 f2 vanishes on X1∪X2 = X .
Hence f1 f2 = 0 ∈ A(X), i. e. A(X) is not an integral domain. �

Remark 2.9 (Irreducible subvarieties↔ prime ideals). Let Y be an affine variety. By Remark 1.18
(a) we have A(X) ∼= A(Y )/IY (X) for any non-empty affine subvariety X of Y , and this ring is an
integral domain if and only if IY (X) is a prime ideal. Hence, by Proposition 2.8 the bijection of the
relative Nullstellensatz of Remark 1.18 (b) restricts to a bijection

{non-empty irreducible affine subvarieties of Y} 1:1←→ {prime ideals in A(Y )}
for any affine variety Y .

Example 2.10.
(a) A finite affine variety is irreducible if and only if it is connected: namely if and only if it

contains at most one point.

(b) Any irreducible space is connected.

(c) The affine space An is irreducible (and thus connected) by Proposition 2.8 since its coor-
dinate ring A(An) = K[x1, . . . ,xn] is an integral domain. More generally, this holds for any
affine variety given by linear equations, since again its coordinate ring is isomorphic to a
polynomial ring.

(d) The union X =V (x1x2)⊂ A2 of the two coordinate axes X1 =V (x1) and X2 =V (x2) is not
irreducible, since X = X1 ∪X2. But X1 and X2 themselves are irreducible by (c). Hence we
have decomposed X into a union of two irreducible spaces.

As already announced, we now want to see that such a decomposition into finitely many irreducible
spaces is possible for any affine variety. In fact, this works for a much larger class of topological
spaces, the so-called Noetherian spaces:
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Definition 2.11 (Noetherian topological spaces). A topological space X is called Noetherian if there
is no infinite strictly decreasing chain

X0 ) X1 ) X2 ) · · ·
of closed subsets of X .

Lemma 2.12. Any affine variety is a Noetherian topological space.

Proof. Let X be an affine variety. By the relative Nullstellensatz of Remark 1.18 (b) an infinite
decreasing chain X0 ) X1 ) X2 ) · · · of affine subvarieties of X would give rise to an infinite in-
creasing chain I(X0)( I(X1)( · · · of ideals in A(X), which does not exist since A(X) is Noetherian
[G3, Corollary 7.14]. Hence X is a Noetherian topological space. �

Remark 2.13 (Subspaces of Noetherian spaces are Noetherian). Let A be a subset of a Noetherian
topological space X . Then A is also Noetherian: Otherwise we would have an infinite strictly de-
scending chain of closed subsets of A, which by definition of the subspace topology we can write
as

A∩X0 ) A∩X1 ) A∩X2 ) · · ·
for closed subsets X0,X1,X2, . . . of X . Then

X0 ⊃ X0∩X1 ⊃ X0∩X1∩X2 ⊃ ·· ·
is a decreasing chain of closed subsets of X . In fact, in contradiction to our assumption it is also
strictly decreasing, since X0∩·· ·∩Xk =X0∩·· ·∩Xk+1 for some k∈N would imply A∩Xk =A∩Xk+1
by intersecting with A.

Combining Lemma 2.12 with Remark 2.13 we therefore see that any subset of an affine variety
is a Noetherian topological space. In fact, all topological spaces occurring in this class will be
Noetherian, and thus we can safely restrict our attention to this class of spaces.

Proposition 2.14 (Irreducible decomposition of Noetherian spaces). Every Noetherian topological
space X can be written as a finite union X = X1 ∪ ·· · ∪Xr of non-empty irreducible closed subsets.
If one assumes that Xi 6⊂ X j for all i 6= j, then X1, . . . ,Xr are unique (up to permutation). They are
called the irreducible components of X.

Proof. For X = /0 the statement is obvious (with r = 0).

Otherwise, to prove existence, assume that there is a topological space X for which the statement
is false. In particular, X is reducible, hence X = X1 ∪X ′1 as in Definition 2.5 (a). Moreover, the
statement of the proposition must be false for at least one of these two subsets, say X1. Continuing
this construction, one arrives at an infinite chain X ) X1 ) X2 ) · · · of closed subsets, which is a
contradiction as X is Noetherian.

To show uniqueness, assume that we have two decompositions

X = X1∪·· ·∪Xr = X ′1∪·· ·∪X ′s . (∗)
Then for any fixed i ∈ {1, . . . ,r} we have Xi ⊂

⋃
j X ′j, so Xi =

⋃
j(Xi∩X ′j). But Xi is irreducible, and

so we must have Xi = Xi ∩X ′j, i. e. Xi ⊂ X ′j for some j. In the same way we conclude that X ′j ⊂ Xk

for some k, so that Xi ⊂ X ′j ⊂ Xk. By assumption this is only possible for i = k, and consequently
Xi = X ′j. Hence every set appearing on the left side of (∗) also appears on the right side (and vice
versa), which means that the two decompositions agree. �

Remark 2.15 (Irreducible decomposition of affine varieties). The irreducible decomposition of an
affine variety X ⊂ An can be computed from the primary decomposition of its ideal: If

I(X) = Q1∩·· ·∩Qr EK[x1, . . . ,xn]

is a primary decomposition of I(X) with primary ideals Q1, . . . ,Qr as in [G3, Chapter 8], we obtain
by Hilbert’s Nullstellensatz

X =V (I(X))
1.7 (b)
= V (Q1)∪·· ·∪V (Qr)

1.7 (a)
= V (P1)∪·· ·∪V (Pr)
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for the prime ideals Pi =
√

Qi for i= 1, . . . ,r. Note that all varieties V (Pi) in this union are irreducible
by Remark 2.9. So keeping only the minimal prime ideals, i. e. the maximal varieties, among them,
we obtain the irreducible decomposition of X as in Proposition 2.14. Note that they correspond
exactly to the minimal prime ideals in A(X), so that we obtain the following additional bijection
from the relative Nullstellensatz of Remark 1.18 (b):

{irreducible components of X} 1:1←→ {minimal prime ideals in A(X)}.

Remark 2.16 (Open subsets of irreducible spaces are dense). We have already seen in Example 2.4
(a) that open subsets tend to be very “big” in the Zariski topology. Here are two precise statements
along these lines. Let X be an irreducible topological space, and let U and U ′ be non-empty open
subsets of X . Then:

(a) The intersection U ∩U ′ is never empty. In fact, by taking complements this is just equivalent
to saying that the union of the two proper closed subsets X\U and X\U ′ is not equal to X ,
i. e. to the definition of irreducibility.

(b) The closure U of U is all of X — one says that U is dense in X . This is easily seen: If
Y ⊂ X is any closed subset containing U then X =Y ∪ (X\U), and since X is irreducible and
X\U 6= X we must have Y = X .

Exercise 2.17. Find the irreducible components of the affine variety V (x1− x2x3,x1x3− x2
2)⊂ A3

C.

Exercise 2.18. Let X ⊂ An be an arbitrary subset. Prove that V (I(X)) = X .

Exercise 2.19. Let X be a topological space.

(a) If X is Noetherian show that we can write it as a finite disjoint union X = X1 ∪ ·· · ∪ Xr
of non-empty connected closed subsets of X , and that this decomposition is unique up to
permutation. We call X1, . . . ,Xr the connected components of X .

(b) Let X1, . . . ,Xr be any subsets of X with X = X1 ∪ ·· · ∪Xr. If all X1, . . . ,Xr are Noetherian,
prove that X is Noetherian as well.

Exercise 2.20. Let A be a subset of a topological space X . Prove:

(a) If Y ⊂ A is closed in the subspace topology of A then Y ∩A = Y .

(b) A is irreducible if and only if A is irreducible.

Exercise 2.21. Let {Ui : i∈ I} be an open cover of a topological space X , and assume that Ui∩U j 6= /0
for all i, j ∈ I. Show:

(a) If Ui is connected for all i ∈ I then X is connected.

(b) If Ui is irreducible for all i ∈ I then X is irreducible.

Exercise 2.22. Let f : X → Y be a continuous map of topological spaces. Prove:

(a) If X is connected then so is f (X).

(b) If X is irreducible then so is f (X).

Exercise 2.23. Recall that for two ideals J1 and J2 in a ring R the ideal quotient is defined by

J1 : J2 = { f ∈ R : f J2 ⊂ J1}.
Show that ideal quotients correspond to differences of varieties in the following sense: If X is an
affine variety and . . .

(a) Y1 and Y2 are subvarieties of X then I(Y1\Y2) = I(Y1) : I(Y2) in A(X);

(b) J1 and J2 are radical ideals in A(X) then V (J1)\V (J2) =V (J1 : J2).

Exercise 2.24. Let X ⊂ An and Y ⊂ Am be irreducible affine varieties. Prove that their product
X×Y ⊂ An+m is irreducible as well.
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An important application of the notion of irreducibility is the definition of the dimension of an affine
variety (or more generally of a topological space — but as with our other concepts above you will
only want to apply it to the Zariski topology). Of course, at least in the case of complex varieties we
have a geometric idea what the dimension of an affine variety should be: the number of coordinates
that you need to describe X locally around any point. Although there are algebraic definitions of
dimension that mimic this intuitive one [G3, Proposition 11.31], the standard definition of dimension
that we will give here uses only the language of topological spaces. Its idea is simply that, if X is
an irreducible topological space, then any closed subset of X not equal to X should have smaller
dimension. The resulting definition is the following.

Definition 2.25 (Dimension and codimension). Let X be a non-empty topological space.

(a) The dimension dimX ∈ N∪{∞} is the supremum over all n ∈ N such that there is a chain

/0 6= Y0 ( Y1 ( · · ·( Yn ⊂ X

of length n of irreducible closed subsets Y1, . . . ,Yn of X .

(b) If Y ⊂ X is a non-empty irreducible closed subset of X the codimension codimX Y of Y in X
is again the supremum over all n such that there is a chain

Y ⊂ Y0 ( Y1 ( · · ·( Yn ⊂ X

of irreducible closed subsets Y1, . . . ,Yn of X containing Y .

To avoid confusion, we will always denote the dimension of a K-vector space V by dimK V , leaving
the notation dimX (without an index) for the dimension of a topological space X as above.

According to the above idea, one should imagine each Yi as having dimension i in a maximal chain
as in Definition 2.25 (a), so that finally dimX = n. In the same way, each Yi in Definition 2.25 (b)
should have dimension i+dimY in a maximal chain, so that n = dimX−dimY can be thought of as
the difference of the dimensions of X and Y .

Example 2.26.
(a) By Example 1.5 (b) the affine space A1 has dimension 1, since the maximal chains of non-

empty irreducible closed subsets of A1 are exactly {a} ( A1 for any point a ∈ A1. The
codimension of {a} in A1 is 1.

(b) One might be tempted to think that the “finiteness condition” of a Noetherian topological
space X ensures that dimX is always finite. This is not true however: If we equip the
natural numbers X = N with the topology in which (except /0 and X) exactly the subsets
Yn := {0, . . . ,n} for n ∈N are closed, then X is Noetherian, but has chains Y0 (Y1 ( · · ·(Yn
of non-empty irreducible closed subsets of arbitrary length.

However, for affine varieties infinite dimensions cannot occur, since in this case the notions of di-
mension and codimension reduce immediately to the concepts of the Krull dimension of a ring and
the codimension (also called height) of a prime ideal that we know from commutative algebra [G3,
Definition 11.1]:

Lemma 2.27 (Dimension and codimension of affine varieties). Let Y be a non-empty irreducible
subvariety of an affine variety X.

(a) The dimension dimX of X is equal to the Krull dimension of the coordinate ring A(X).

(b) The codimension codimX Y of Y in X is equal to the codimension of the prime ideal I(Y ) in
A(X).

In particular, dimensions and codimensions of (irreducible) affine varieties are always finite.

Proof. By Remark 2.9, chains of non-empty irreducible closed subsets of X (containing Y ) cor-
respond exactly to chains of prime ideals of A(X) (contained in I(Y )). Hence, Definition 2.25 is
directly equivalent to the definition of the Krull dimension of A(X) and the codimension of I(Y )
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in A(X), respectively. By [G3, Remark 11.10], these numbers are finite since A(X) is a finitely
generated K-algebra. �

In fact, this correspondence allows us to transfer many results on Krull dimensions from commu-
tative algebra immediately to statements on dimensions of affine varieties. For better reference, let
us quickly recall the results that we will need in this class. We will list them only for irreducible
varieties, since we will see in Remark 2.31 (a) that the general case can then easily be obtained by
considering irreducible decompositions. The results are all very intuitive:

Proposition 2.28 (Properties of dimension). Let X and Y be non-empty irreducible affine varieties.

(a) We have dim(X×Y ) = dimX +dimY (with X×Y having the Zariski topology as in Example
2.4 (c)). In particular, dimAn = n.

(b) If Y ⊂ X we have dimX = dimY + codimX Y . In particular, codimX{a} = dimX for every
point a ∈ X.

(c) If f ∈ A(X) is non-zero every irreducible component of V ( f ) has codimension 1 in X (and
hence dimension dimX−1 by (b)).

Proof. Statement (a) is [G3, Proposition 11.9 (a) and Exercise 11.33 (a)]; the proof relies on Noether
normalization.

Part (b) is [G3, Example 11.13 (a)]; the main non-trivial fact here (which would be false in arbitrary
rings) is that all maximal chains of prime ideals in A(X) have the same length, so that a maximal
chain containing the prime ideal I(Y ) also has length dimX .

Finally, statement (c) is just Krull’s Principal Ideal Theorem [G3, Proposition 11.15 and Corollary
11.19]. �

03
Example 2.29. Let X =V (x2−x2

1)⊂A2
C be the affine variety whose real

points are shown in the picture on the right. Then we have as expected:

(a) X is irreducible by Proposition 2.8 since its coordinate ring
A(X) = C[x1,x2]/(x2− x2

1)
∼= C[x1] is an integral domain.

(b) X has dimension 1 by Proposition 2.28 (c), since it is the zero locus
of one non-zero polynomial in the affine space A2, and dimA2 = 2
by Proposition 2.28 (a).

X
x2

x1

Exercise 2.30. Let A be an arbitrary subset of a topological space X . Prove that dimA≤ dimX .

Remark 2.31. Depending on where our chains of irreducible closed subvarieties end resp. start, we
can break up the supremum in Definition 2.25 into irreducible components or local contributions:

(a) If X = X1∪·· ·∪Xr is the irreducible decomposition of a Noetherian topological space as in
Proposition 2.14, we have

dimX = max{dimX1, . . . ,dimXr} :

“≤” Assume that dimX ≥ n, so that there is a chain Y0 ( · · ·(Yn of non-empty irreducible
closed subvarieties of X . Then Yn = (Yn ∩X1)∪ ·· · ∪ (Yn ∩Xr) is a union of closed
subsets. So as Yn is irreducible we must have Yn =Yn∩Xi, and hence Yn ⊂ Xi, for some
i. But then Y0 ( · · ·( Yn is a chain of non-empty irreducible closed subsets in Xi, and
hence dimXi ≥ n.

“≥” Let max{dimX1, . . . ,dimXr} ≥ n. Then there is a chain of non-empty irreducible
closed subsets Y0 ( · · · ( Yn in some Xi. This is also such a chain in X , and hence
dimX ≥ n.

So for many purposes it suffices to consider the dimension of irreducible spaces.

(b) We always have dimX = sup{codimX{a} : a ∈ X}:
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“≤” If dimX ≥ n there is a chain Y0 ( · · ·( Yn of non-empty irreducible closed subsets of
X . For any a ∈ Y0 this chain then shows that codimX{a} ≥ n.

“≥” If codimX{a} ≥ n for some a ∈ X there is a chain {a} ⊂ Y0 ( · · · ( Yn of non-empty
irreducible closed subsets of X , which also shows that dimX ≥ n.

The picture below illustrates these two equations: The affine variety X = V (x1x3,x2x3) ⊂ A3 is a
union of two irreducible components, a line V (x1,x2) of dimension 1 and a plane V (x3) of dimension
2 (see Proposition 2.28 (a)). So by (a) we have dimX = 2 (with a maximal chain of length 2 as in
Definition 2.25 (a) given by Y0 ( Y1 ( Y2).

X1

(

X0

Y1( (Y0 Y2

As for (b), the codimension of the point Y0 is 2, whereas the codimension of the point X0 is 1, as
illustrated by the chains in the picture. Note that this codimension of a point can be interpreted
geometrically as the local dimension of X at this point. Hence Proposition 2.28 (b) can also be
interpreted as saying that the local dimension of an irreducible variety is the same at every point.

In practice, we will usually be concerned with affine varieties all of whose components have the same
dimension. These spaces have special names that we want to introduce now. Note however that (as
with the definition of a variety, see Remark 1.3) these terms are not used consistently throughout the
literature — sometimes e. g. a curve is required to be irreducible, and sometimes it might be allowed
to have additional components of dimension less than 1.

Definition 2.32 (Pure-dimensional spaces).
(a) A Noetherian topological space X is said to be of pure dimension n if every irreducible

component of X has dimension n.

(b) An affine variety is called . . .

• a curve if it is of pure dimension 1;

• a surface if it is of pure dimension 2;

• a hypersurface in an irreducible affine variety Y if it is an affine subvariety of Y of
pure dimension dimY −1.

Exercise 2.33. Let X be the set of all 2×3 matrices over a field K that have rank at most 1, consid-
ered as a subset of A6 = Mat(2×3,K).

Show that X is an irreducible affine variety. What is its dimension?

Exercise 2.34. Let X be a topological space. Prove:

(a) If {Ui : i ∈ I} is an open cover of X then dimX = sup{dimUi : i ∈ I}.
(b) If X is an irreducible affine variety and U ⊂ X a non-empty open subset then dimX = dimU .

Does this statement hold more generally for any irreducible topological space?
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Exercise 2.35. Let X be an affine variety with irreducible decomposition X = X1∪ ·· ·∪Xr, and let
a ∈ X . Show that the local dimension codimX{a} of X at a is given by

codimX{a}= max{dimXi : a ∈ Xi}.

Exercise 2.36. Prove:

(a) Every Noetherian topological space is compact. In particular, every open subset of an affine
variety is compact in the Zariski topology. (Recall that by definition a topological space X
is compact if every open cover of X has a finite subcover.)

(b) A complex affine variety of dimension at least 1 is never compact in the classical topology.

We have seen in Proposition 2.28 (c) that the zero locus of a single polynomial in an irreducible
affine variety is a hypersurface. Let us now address the opposite question: Is every (irreducible)
hypersurface of a given irreducible affine variety X the zero locus of a single polynomial? Surpris-
ingly, it turns out that the answer to this question depends on a rather subtle algebraic property of
the coordinate ring A(X), namely on whether it is a unique factorization domain, i. e. whether every
non-zero non-unit in A(X) can be written as a product of prime elements [G3, Definition 8.1]. The
reason for this is the following result from commutative algebra.

Proposition 2.37. Let R be a Noetherian integral domain (e. g. the coordinate ring A(X) of an
irreducible affine variety X). Then the following two statements are equivalent:

(a) Every prime ideal of codimension 1 in R is principal.

(b) R is a unique factorization domain.

Proof.

(a)⇒ (b): First of all, similarly to the proof of Proposition 2.14 we can decompose any non-
zero non-unit f ∈ R as a product of irreducible elements since R is Noetherian: Otherwise
f cannot be irreducible itself, so we must have a decomposition f = f1 f ′1 into non-units,
of which at least one factor, say f1, is not a product of irreducible elements. We can then
continue this process, i. e. write f1 = f2 f ′2 where f2 is not a product of irreducibles, and so
on. We thus obtain an infinite chain 〈 f 〉 ( 〈 f1 〉 ( 〈 f2 〉 ( · · · , in contradiction to R being
Noetherian.

To prove that R is a unique factorization domain it therefore suffices to show that every
irreducible element f ∈ R is prime. To see this, choose a minimal prime ideal P containing
f . By Krull’s Principal Ideal Theorem [G3, Proposition 11.15] we then have codimP = 1,
so by assumption P is principal, i. e. we have P = 〈g〉 for a prime element g. But g divides f
and f is irreducible, so that f and g agree up to units, and we obtain that f is prime as well.

(b)⇒ (a): Let P be a prime ideal of codimension 1 in R. As P 6= 〈1〉, we can choose a non-zero
non-unit f ∈ P.

As R is a unique factorization domain, we can write f = f1 · · · · · fk for some prime elements
f1, . . . , fk ∈ R. Since P is a prime ideal we must then have fi ∈ P for some i. We thus obtain
a chain {0} ( 〈 fi 〉 ⊂ P of prime ideals in P. But as the codimension of P is 1 this requires
that P = 〈 fi 〉, i. e. that P is principal. �

Remark 2.38 (Ideal of hypersurfaces in An). Let X be an irreducible hypersurface in An. Then
I(X)EK[x1, . . . ,xn] is a prime ideal of codimension 1. As the polynomial ring is a unique factoriza-
tion domain [G3, Proposition 8.5] it follows from Proposition 2.37 that I(X) = 〈 f 〉 for an irreducible
polynomial f ∈ K[x1, . . . ,xn].

If X ⊂ An is still a hypersurface, but not necessarily irreducible, we can apply the same argument to
each component of its irreducible decomposition X = X1∪ ·· ·∪Xk to obtain I(X j) = 〈 f j 〉 for some
f j ∈ K[x1, . . . ,xn] and all j. By Lemma 1.12 (a) the ideal I(X) = 〈 f 〉 with f = f1 · · · · · fk is then
again principal.

As f is clearly unique up to units, we can associate its degree naturally to the hypersurface X :
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Definition 2.39 (Degree of an affine hypersurface). Let X be an affine hypersurface in An, with ideal
I(X) = 〈 f 〉 as in Remark 2.38. Then the degree of f is also called the degree of X , denoted degX .
For the degrees 1, 2, 3 one calls X a linear, quadric, or cubic hypersurface, respectively.

In general, it is a hard problem to figure out if the coordinate ring of a given affine variety is a unique
factorization domain. Let us therefore just give a single example in which this is not the case, and
hence in which by Proposition 2.37 there is an irreducible codimension-1 hypersurface whose ideal
is not principal.

Exercise 2.40. Let R = K[x1,x2,x3,x4]/〈x1x4− x2x3 〉. Show:

(a) R is an integral domain of dimension 3.

(b) x1, . . . ,x4 are irreducible, but not prime in R. In particular, R is not a unique factorization
domain.

(c) x1x4 and x2x3 are two decompositions of the same element of R into irreducible elements
that do not agree up to units.

(d) 〈x1,x2 〉 is a prime ideal of codimension 1 in R that is not principal.

In particular, the plane V (x1,x2) is a hypersurface in the affine variety X = V (x1x4− x2x3) whose
ideal cannot be generated by one element in A(X).


