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11. Dimension

We have already met several situations in this course in which it seemed to be desirable to have a
notion of dimension (of a variety, or more generally of a ring): for example, in the geometric inter-
pretation of the Hilbert Basis Theorem in Remark 7.15, or of the Noether Normalization in Remark
10.6. We have also used the term “curve” several times already to refer to a “one-dimensional va-
riety”, and even if we have not defined this rigorously yet it should be intuitively clear what this
means. But although this concept of dimension is very intuitive and useful, it is unfortunately also
one of the most complicated subjects in commutative algebra when it comes to actually proving
theorems. We have now developed enough tools however to be able to study some basic dimension
theory in this chapter without too many complications. Let us start with the definition of dimension,
whose idea is similar to that of the length of a module in Definition 3.18.

Definition 11.1 (Dimension). Let R be a ring.

(a) The (Krull) dimension dimR of R is the maximum number n ∈N such that there is a chain
of prime ideals

P0 ( P1 ( · · ·( Pn

of length n in R.

In order to distinguish this notion of dimension from that of a K-vector space V , we will
write the latter always as dimK V in these notes.

(b) The codimension or height of a prime ideal P in R is the maximum number n ∈N such that
there is a chain as in (a) with Pn ⊂ P. We denote it by codimR P, or just codimP if the ring is
clear from the context.

(c) The dimension dimX of a variety X is defined to be the dimension of its coordinate ring
A(X). A 1-dimensional variety is called a curve. The codimension of an irreducible subva-
riety Y in X is defined to be the codimension of the prime ideal I(Y ) in A(X) (see Remark
2.7 (b)); we denote it by codimX Y or just codimY .

In all cases, we set the dimension resp. codimension formally to ∞ if there is no bound on the length
of the chains considered. Also, note that in all cases there is at least one such chain (by Corollary
2.17 in (a), and the trivial length-0 chain with P0 = P in (b)), hence the definitions above make sense.

Remark 11.2 (Geometric interpretation of dimension). Let X be a variety over an algebraically
closed field. By Remark 2.7 (b) and Corollary 10.14, the prime ideals in the coordinate ring A(X) are
in one-to-one correspondence with non-empty irreducible subvarieties of X . As this correspondence
reverses inclusions, Definition 11.1 says that the dimension of X — or equivalently of its coordinate
ring A(X) — is equal to the biggest length n of a chain

X0 ) X1 ) · · ·) Xn 6= /0

of irreducible subvarieties of X . Now as in Remark 7.15 the geometric idea behind this definition is
that making an irreducible subvariety smaller is only possible by reducing its dimension, so that in
a maximal chain as above the dimension of Xi should be dimX − i, with Xn being a point and X0 an
irreducible component of X .

Similarly, the codimension of an irreducible subvariety Y in X is the biggest length n of a chain

X0 ) X1 ) · · ·) Xn ⊃ Y.

Again, for a maximal chain X0 should be an irreducible component of X , and the dimension should
drop by 1 in each inclusion in the chain. Moreover, we will have Xn = Y in a maximal chain, so that
we can think of n as dimX − dimY , and hence as what one would expect geometrically to be the
codimension of Y in X (see Example 11.13 (a)).
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Example 11.3.
(a) Every field has dimension 0, since the zero ideal is the only prime ideal in this case.
(b) More generally, the dimension of a ring R is 0 if and only if there are no strict inclusions

among prime ideals of R, i. e. if and only if all prime ideals are already maximal. So we can
e. g. rephrase the theorem of Hopkins in Proposition 7.17 as

R is Artinian ⇔ R is Noetherian and dimR = 0.

Note that this fits well with the geometric interpretation of Remark 11.2, since we have
already seen in Remark 7.15 that Artinian rings correspond to finite unions of points.

(c) Let R be a principal ideal domain which is not a field. Then except for the zero ideal (which
is prime but not maximal) the notions of prime and maximal ideals agree by Example 2.6
(b). So the longest chains of prime ideals in R are all of the form 0 ( P for a maximal ideal
P. It follows that dimR = 1.
In particular, the ring Z and polynomial rings K[x] over a field K have dimension 1. Geo-
metrically, this means that the variety A1

K (with coordinate ring K[x]) has dimension 1.

Remark 11.4 (Maximal chains of prime ideals can have different lengths). One of the main obstacles
when dealing with dimensions is that, in general, maximal chains of prime ideals as in Definition
11.1 (in the sense that they cannot be extended to a longer chain by inserting more prime ideals) do
not necessarily all have the same length. This is easy to see in geometry, where the corresponding
statement is roughly that a space can be made up of components of different dimension. Consider
e. g. the union X =V (x1x3,x2x3)⊂A3

R of a line and a plane as in Example 0.4 (e), and the following
two chains of irreducible subvarieties in X of lengths 1 and 2, respectively.

) )

)

X0

X1

Y0 Y1 Y2

The first chain X0 )X1 is maximal by Example 11.3 (c), since the line has dimension 1. Nevertheless,
the second chain is longer (and in fact also maximal, since the plane has dimension 2 as we will see
in Proposition 11.9). Hence, due to the two components of X (of different dimension) the maximal
chains in X have different lengths. Similarly, the same chains above show that the codimension of
the point X1 is 1, whereas the codimension of the point Y2 is 2.

Let us state a few properties of dimension that are immediately obvious from the definition.

Remark 11.5 (First properties of dimension). Let R be a ring.

(a) For any prime ideal PER, the prime ideals of R contained in P are in one-to-one correspon-
dence with prime ideals in the localization RP by Example 6.8. In other words, we always
have codimP = dimRP.

(b) Again let PER be a prime ideal, and set n = dimR/P and m = codimP = dimRP. Then by
Lemma 1.21 there are chains of prime ideals

P0 ( · · ·( Pm ⊂ P and P⊂ Q0 ( · · ·( Qn
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in R that can obviously be glued to a single chain of length m+n. Hence we conclude that

dimR≥ dimR/P+ codimP.

Geometrically, this means for an irreducible subvariety Y of a variety X that

dimX ≥ dimY + codimX Y,

since A(Y ) ∼= A(X)/I(Y ) by Lemma 0.9 (d). Note that we do not have equality in general,
since e. g. dimX1 = 0 and codimX1 = 1 in the example of Remark 11.4.

(c) Dimension is a “local concept”: we claim that

dimR = sup{dimRP : P maximal ideal of R}= sup{codimP : P maximal ideal of R}.
In fact, if P0 ( · · ·( Pn is a chain of prime ideals in R then by Example 6.8 the corresponding
localized chain is a chain of primes ideals of the same length in RP, where P is any maximal
ideal containing Pn. Conversely, any chain of prime ideals in a localization RP corresponds
to a chain of prime ideals (contained in P) of the same length in R.
Geometrically, we can think of this as the statement that the dimension of a variety is the
maximum of the “local dimensions” at every point — so that e. g. the union of a line and a
plane in Remark 11.4 has dimension 2.

In the favorable case when all maximal chains of prime ideals do have the same length, the prop-
erties of Remark 11.5 hold in a slightly stronger version. We will see in Corollary 11.12 that this
always happens e. g. for coordinate rings of irreducible varieties. In this case, the dimension and
codimension of a subvariety always add up to the dimension of the ambient variety, and the local
dimension is the same at all points.

Lemma 11.6. Let R be a ring of finite dimension in which all maximal chains of prime ideals have
the same length. Moreover, let PER be a prime ideal. Then:

(a) The quotient R/P is also a ring of finite dimension in which all maximal chains of prime
ideals have the same length;

(b) dimR = dimR/P+ codimP;

(c) dimRP = dimR if P is maximal.

Proof. By Lemma 1.21 and Corollary 2.4, a chain of prime ideals in R/P corresponds to a chain
Q0 ( · · ·( Qr of prime ideals in R that contain P. In particular, the length of such chains is bounded
by dimR < ∞, and hence dimR/P < ∞ as well. Moreover, if the chain is maximal we must have
Q0 = P, and thus we can extend it to a maximal chain

P0 ( · · ·( Pm = P = Q0 ( · · ·( Qr

of prime ideals in R that includes P. The chains P0 ( · · · ( Pm and Q0 ( · · · ( Qr then mean that
codimP≥ m and dimR/P≥ r. Moreover, we have m+ r = dimR by assumption. Hence

dimR≥ dimR/P+ codimP≥ dimR/P+m≥ r+m = dimR

by Remark 11.5 (b), and so equality holds. This shows r = dimR/P and hence (a), and of course
also (b). The statement (c) follows from (b), since for maximal P we have dimR/P = 0 by Example
11.3 (a), and dimRP = codimP by Remark 11.5 (a). �

20
Exercise 11.7. Let I = Q1∩ ·· ·∩Qn be a primary decomposition of an ideal I in a Noetherian ring
R. Show that

dimR/I = max{dimR/P : P is an isolated prime ideal of I}.
What is the geometric interpretation of this statement?

Let us now show that, in a Noether normalization K[z1, . . . ,zr]→ R of a finitely generated algebra R
over a field K as in Proposition 10.5, the number r is uniquely determined to be dimR — as already
motivated in Remark 10.6. More precisely, this will follow from the following two geometrically
intuitive facts:
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• Integral extensions preserve dimension: by Example 9.19, they correspond to surjective
maps of varieties with finite fibers, and thus the dimension of the source and target of the
map should be the same.

• The dimension of the polynomial ring K[x1, . . . ,xn] (and thus of the variety An
K) is n.

We will start with the proof of the first of these statements.

Lemma 11.8 (Invariance of dimension under integral extensions). For any integral ring extension
R⊂ R′ we have dimR = dimR′.

Proof.

“≤” Let P0 ( · · · ( Pn be a chain of prime ideals in R. By Lying Over (for P0) and Going Up
(successively for P1, . . . ,Pn) as in Propositions 9.18 and 9.24 we can find a corresponding
chain P′0 ( · · · ( P′n of the same length in R′ (where the inclusions have to be strict again
since P′i ∩R = Pi for all i).

“≥” Now let P′0 ( · · ·( P′n be a chain of prime ideals in R′. Intersecting with R we get a chain of
prime ideals P0 ( · · ·( Pn in R by Exercise 2.9 (b), where the inclusions are strict again by
Incomparability as in Proposition 9.20. �

For the statement that dimK[x1, . . . ,xn] = n we can actually right away prove the stronger result that
every chain of prime ideals has length n, and thus e. g. by Lemma 11.6 (c) that the local dimension of
K[x1, . . . ,xn] is the same at all maximal ideals. This is not too surprising if K is algebraically closed,
since then all maximal ideals of K[x1, . . . ,xn] are of the form (x1 − a1, . . . ,xn − an) by Corollary
10.10, and thus can all be obtained from each other by translations. But for general fields there will
be more maximal ideals in the polynomial ring, and thus the statement that all such localizations
have the same dimension is far less obvious.

Proposition 11.9 (Dimension of polynomial rings). Let K be a field, and let n ∈ N.

(a) dimK[x1, . . . ,xn] = n.

(b) All maximal chains of prime ideals in K[x1, . . . ,xn] have length n.

Proof. We will prove both statements by induction on n, with the case n = 0 being obvious. (In fact,
we also know the statement for n = 1 already by Example 11.3 (c)).

So let n ≥ 1, and let P0 ( · · · ( Pm be a chain of prime ideals in K[x1, . . . ,xn]. We have to show
that m ≤ n, and that equality always holds for a maximal chain. By possibly extending the chain
we may assume without loss of generality that P0 = 0, P1 is a minimal non-zero prime ideal, and
Pm is a maximal ideal. Then P1 = ( f ) for some non-zero polynomial f by Exercise 8.32 (b), since
K[x1, . . . ,xn] is a unique factorization domain by Remark 8.6.

By a change of coordinates as in the proof of the Noether normalization in Proposition 10.5 we
can also assume without loss of generality that f is monic in xn, and hence that K[x1, . . . ,xn]/P1 =
K[x1, . . . ,xn]/( f ) is integral over K[x1, . . . ,xn−1] by Proposition 9.5. We can now transfer our chain
of prime ideals from K[x1, . . . ,xn] to K[x1, . . . ,xn−1] as in the diagram below: after dropping the first
prime ideal P0, first extend the chain by the quotient map K[x1, . . . ,xn]→ K[x1, . . . ,xn]/P1, and then
contract it by the integral ring extension K[x1, . . . ,xn−1]→ K[x1, . . . ,xn]/P1.

(· · ·( PmP1K[x1, . . . ,xn]:

P1/P1 · · · ( Pm/P1K[x1, . . . ,xn]/P1: (

(P1/P1)∩K[x1, . . . ,xn−1] ( · · · ( (Pm/P1)∩K[x1, . . . ,xn−1]K[x1, . . . ,xn−1]:

extension

contraction

extension

contraction
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We claim that both these steps preserve prime ideals and their strict inclusions, and transfer maximal
chains to maximal chains. In fact, for the extension along the quotient map this follows from the
one-to-one correspondence between prime ideals in rings and their quotients as in Lemma 1.21 and
Corollary 2.4. The contraction then maps prime ideals to prime ideals by Exercise 2.9 (b), and
keeps the strict inclusions by the Incomparability property of Proposition 9.20. Moreover, it also
preserves maximal chains: in the bottom chain of the above diagram the first entry is 0, the last one
is a maximal ideal by Corollary 9.21 (b), and if we could insert another prime ideal at any step in the
chain we could do the same in the middle chain as well by Exercise 10.8 (a).

Now by the induction hypothesis the length m− 1 of the bottom chain is at most n− 1, and equal
to n−1 if the chain is maximal. Hence we always have m≤ n, and m = n if the original chain was
maximal. �

Remark 11.10 (Noether normalization and dimension). Let R be a finitely generated algebra over a
field K, and let K[z1, . . . ,zn]→ R be a Noether normalization as in Proposition 10.5. Using Lemma
11.8 and Proposition 11.9 we now see rigorously that then the number n is uniquely determined
to be n = dimK[z1, . . . ,zn] = dimR, as already expected in Remark 10.6. In particular, it follows
that a finitely generated algebra over a field (and hence a variety) is always of finite dimension — a
statement that is not obvious from the definitions! In fact, the following exercise shows that the finite
dimension and Noetherian conditions are unrelated, although rings that meet one of these properties
but not the other do not occur very often in practice.

Exercise 11.11 (Finite dimension 6⇐⇒ noetherian). Give an example of a non-Noetherian ring of
finite dimension.

In fact, there are also Noetherian rings which do not have finite dimension, but these are hard to
construct [E, Exercise 9.6].

Corollary 11.12. Let R be a finitely generated algebra over a field K, and assume that R is an
integral domain. Then every maximal chain of prime ideals in R has length dimR.

Proof. By Lemma 1.30 and Lemma 2.3 (a) we can write R = K[x1, . . . ,xn]/P for a prime ideal P in
a polynomial ring K[x1, . . . ,xn]. Thus the statement follows from Proposition 11.9 (b) with Lemma
11.6 (a). �

Example 11.13. Let Y be an irreducible subvariety of an irreducible variety X . Then by Corollary
11.12 every maximal chain of prime ideals in A(X) has the same length, and consequently Lemma
11.6 for R = A(X) implies that

(a) dimX = dimY + codimX Y for every irreducible subvariety Y of X (since then P = I(Y ) is a
prime ideal and R/P∼= A(Y ));

(b) the local dimension of X is dimX at every point, i. e. all localizations of A(X) at maximal
ideals have dimension dimX .

Next, let us study how the codimension of a prime ideal is related to the number of generators of
the ideal. Geometrically, one would expect that an irreducible subvariety given by n equations has
codimension at most n, with equality holding if the equations are “independent” in a suitable sense.
More generally, if the zero locus of the given equations is not irreducible, each of its irreducible
components should have codimension at most n.

Algebraically, if I = (a1, . . . ,an) is an ideal in a coordinate ring generated by n elements, the irre-
ducible components of V (I) are the maximal irreducible subvarieties of V (I) and thus correspond to
the minimal prime ideals over I as in Exercise 2.23. So our geometric idea above leads us to the ex-
pectation that a minimal prime ideal over an ideal generated by n elements should have codimension
at most n.

We will now prove this statement by induction on n for any Noetherian ring. For the proof we need
the following construction of the so-called symbolic powers P(k) of a prime ideal P in a ring R.
Their behavior is very similar to that of the ordinary powers Pk; in fact the two notions agree after
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localization at P as we will see in the next lemma. The main advantage of the symbolic powers is
that they are always primary (in contrast to the ordinary powers, see Example 8.13).

Lemma 11.14 (Symbolic Powers). Let R be a ring. For a prime ideal PER and n ∈N consider the
ideal

P(n) := {a ∈ R : ab ∈ Pn for some b ∈ R\P}
called the n-th symbolic power of P. Then:

(a) Pn ⊂ P(n) ⊂ P;

(b) P(n) is P-primary;

(c) P(n) RP = Pn RP.

Proof.

(a) The first inclusion is obvious (take b = 1). For the second, let a ∈ P(n), hence ab ∈ Pn ⊂ P
for some b ∈ R\P. But then a ∈ P since P is prime.

(b) Taking radicals in (a) we see that P =
√

P =
√

Pn ⊂
√

P(n) ⊂
√

P = P, so
√

P(n) = P. To see
that P(n) is P-primary, let ab ∈ P(n), i. e. abc ∈ Pn for some c ∈ R\P. Then if b /∈

√
P(n) = P

we also have bc /∈ P and thus by definition a ∈ P(n). Hence P(n) is P-primary.

(c) For the inclusion “⊂”, let b
s ∈P(n) RP, i. e. bc∈Pn for some s,c∈R\P. Then b

s =
bc
sc ∈Pn RP.

The other inclusions is obvious since P(n) ⊃ Pn. �

Proposition 11.15 (Krull’s Principal Ideal Theorem). Let R be a Noetherian ring, and let a ∈ R.
Then every minimal prime ideal P over (a) satisfies codimP≤ 1.

Proof. Let Q′ ⊂Q ( P be a chain of prime ideals in R; we have to prove that Q′ = Q. By the one-to-
one correspondence of Example 6.8 between prime ideals in R and in its quotients resp. localizations
we can take the quotient by Q′ and localize at P and prove the statement in the resulting ring, which
we will again call R for simplicity. Note that this new ring is also still Noetherian by Remark 7.8 (b)
and Exercise 7.23. In this new situation we then have:

• by taking the quotient we achieved that Q′ = 0 and R is an integral domain;

• by localizing we achieved that R is local, with unique maximal ideal P;

• we have to prove that Q = 0.

Let us now consider the symbolic powers Q(n) of Lemma 11.14. Obviously, we have Q(n+1) ⊂ Q(n)

for all n. Moreover:

(a) Q(n) ⊂ Q(n+1) +(a) for some n: The ring R/(a) is Noetherian by Remark 7.8 (b) and of
dimension 0 since the unique maximal ideal P/(a) of R/(a) is also minimal by assumption.
Hence R/(a) is Artinian by Hopkins as in Example 11.3 (b). This means that the descending
chain

(Q(0)+(a))/(a) ) (Q(1)+(a))/(a) ) · · ·
of ideals in R/(a) becomes stationary. Hence Q(n)+(a) = Q(n+1)+(a) for some n, which
implies Q(n) ⊂ Q(n+1)+(a).

(b) Q(n) = Q(n+1) +PQ(n): The inclusion “⊃” is clear, so let us prove “⊂”. If b ∈ Q(n) then
b = c+ar for some c ∈Q(n+1) and r ∈ R by (a). So ar = b−c ∈Q(n). But a /∈Q (otherwise
P would not be minimal over (a)) and Q(n) is Q-primary by Lemma 11.14 (b), and hence
r ∈ Q(n). But this means that b = c+ar ∈ Q(n+1)+PQ(n). 21

Taking the quotient by Q(n+1) in the equation of (b) we see that Q(n)/Q(n+1) = PQ(n)/Q(n+1),
and hence that Q(n)/Q(n+1) = 0 by Nakayama’s Lemma as in Exercise 6.16 (a). This means
that Q(n) = Q(n+1). By Lemma 11.14 (c), localization at Q now gives Qn RQ = Qn+1 RQ, hence
Qn RQ = (QRQ)Qn RQ by Exercise 1.19 (c), and so Qn RQ = 0 by Exercise 6.16 (a) again. But as R
is an integral domain, this is only possible if Q = 0. �
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Exercise 11.16. Let n ∈ N>0, and let P0 ( P1 ( · · ·( Pn be a chain of prime ideals in a Noetherian
ring R. Moreover, let a ∈ Pn. Prove:

(a) There is a chain of prime ideals P′0 ( P′1 ( · · · ( P′n−1 ( Pn (i. e. in the given chain we may
change all prime ideals except the last one) such that a ∈ P′1.

(b) There is in general no such chain with a ∈ P′0.

Corollary 11.17. Let R be a Noetherian ring, and let a1, . . . ,an ∈ R. Then every minimal prime ideal
P over (a1, . . . ,an) satisfies codimP≤ n.

Proof. We will prove the statement by induction on n; the case n = 1 is Proposition 11.15. So let
n ≥ 2, and let P0 ( · · · ( Ps be a chain of prime ideals in P. After possibly changing some of these
prime ideals (except the last one), we may assume by Exercise 11.16 (a) that an ∈ P1. But then

P1/(an)( · · ·( Ps/(an)

is a chain of prime ideals of length s− 1 in P/(an). As P/(an) is minimal over (a1, . . . ,an−1), we
now know by induction that s−1≤ codimP/(an)≤ n−1, and hence that s≤ n. As the given chain
was arbitrary, this means that codimP≤ n. �

Remark 11.18 (Geometric interpretation of Krull’s Principal Ideal Theorem). Let R be the coordi-
nate ring of a variety X ⊂An

K over K, and let I = ( f1, . . . , fr)ER be an ideal generated by r elements.
As mentioned above, the minimal prime ideals over I correspond to the irreducible components of
V (I). Hence, Corollary 11.17 states geometrically that every irreducible component of V (I) has
codimension at most r, and thus by Example 11.13 (a) dimension at least n− r.

For the case of a principal ideal (a), we can even give an easy criterion for when equality holds in
Proposition 11.15. Geometrically, intersecting a variety X with the zero locus of a polynomial f
reduces the dimension if the polynomial does not vanish identically on any irreducible component
of X , i. e. if f is not a zero divisor in A(X):

Corollary 11.19. Let R be a Noetherian ring, and let a ∈ R not be a zero-divisor. Then for every
minimal prime ideal P over (a) we have codimP = 1.

Proof. Let P1, . . . ,Pn be the minimal prime ideals over the zero ideal as in Corollary 8.30. By Propo-
sition 8.27 they can be written as Pi =

√
0 : bi for some non-zero b1, . . . ,bn ∈ R.

We claim that a /∈ Pi for all i = 1, . . . ,n. In fact, if a ∈ Pi for some i then a ∈
√

0 : bi, and hence
ar bi = 0 for some r ∈ N>0. But if we choose r minimal then a · (ar−1 bi) = 0 although ar−1 bi 6= 0,
i. e. a would have to be a zero-divisor in contradiction to our assumption.

So a /∈ Pi for all i. But on the other hand a ∈ P, and hence P cannot be any of the minimal prime
ideals P1, . . . ,Pn of R. So P must strictly contain one of the P1, . . . ,Pn, which means that codimP≥ 1.
The equality codimP = 1 now follows from Proposition 11.15. �

Example 11.20. Let X = V (x2 + y2− 1) ⊂ A2
R be the unit circle. As its coordinate ring is R =

R[x,y]/(x2 + y2−1) and the ideal (x2 + y2−1) is prime, we get as expected that X has dimension

dimX = dimR = dimR[x,y]− codim(x2 + y2−1) (Lemma 11.6 (b) and Proposition 11.9 (b))
= 2−1 (Proposition 11.9 (a) and Corollary 11.19)
= 1.

With an analogous computation, note that the ring R[x,y]/(x2 + y2 + 1) has dimension 1 as well,
although V (x2 + y2 +1) = /0 in A2

R.

Exercise 11.21. Compute the dimension and all maximal ideals of C[x,y,z]/(x2− y2,z2x− z2y).

Exercise 11.22. Show:

(a) Every maximal ideal in the polynomial ring Z[x] is of the form (p, f ) for some prime number
p ∈ Z and a polynomial f ∈ Z[x] whose class in Zp[x] = Z[x]/(p) is irreducible.
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(b) dimZ[x] = 2.

Exercise 11.23. For each of the two ring extensions R⊂ R′

(i) R[y]⊂ R[x,y]/(x2− y) (ii) Z⊂ Z[x]/(x2−3)

find:

(a) a non-zero prime ideal PER with a unique prime ideal P′ER′ lying over P, and R′/P′∼=R/P;

(b) a non-zero prime ideal PER with a unique prime ideal P′ER′ lying over P, and R′/P′ 6∼=R/P;

(c) a non-zero prime ideal PER such that there is more than one prime ideal in R′ lying over P.

(In these three cases the prime ideal P is then called ramified, inert, and split, respectively. Can you
see the reason for these names?)

Exercise 11.24. Let R = C[x,y,z,w]/I with I = (x,y)∩ (z,w), and let a = x+ y+ z+w ∈ R. By
Krull’s Principal Ideal Theorem we know that every isolated prime ideal of (a) in R has codimension
at most 1. However, show now that (a) has an embedded prime ideal of codimension 2.

We have now studied the Krull dimension of rings as in Definition 11.1 in some detail. In the rest
of this chapter, we want to discuss two more approaches to define the notion of dimension. Both of
them will turn out to give the same result as the Krull dimension in many (but not in all) cases.

The first construction is based on the idea that the dimension of a variety X over a field K can be
thought of as the number of independent variables needed to describe its points. In more algebraic
terms, this means that dimX should be the maximum number of functions on X that are “alge-
braically independent” in the sense that they do not satisfy a polynomial relation with coefficients
in K. This notion of algebraic independence is best-behaved for extensions of fields, and so we will
restrict ourselves to irreducible varieties: in this case A(X) is a finitely generated K-algebra that is
an integral domain, and hence we can consider its quotient field QuotR as an extension field of K
(i. e. consider rational instead of polynomial functions on X).

Definition 11.25 (Algebraic dependence, transcendence bases). Let K ⊂ L be a field extension, and
let B be a subset of L. As usual, we denote by K(B) the smallest subfield of L containing K and B
[G3, Definition 1.13].

(a) The subset B is called algebraically dependent over K if there is a non-zero polynomial
f ∈ K[x1, . . . ,xn] with f (b1, . . . ,bn) = 0 for some distinct b1, . . . ,bn ∈ B. Otherwise B is
called algebraically independent.

(b) The subset B is called a transcendence basis of L over K if it is algebraically independent
and L is algebraic over K(B).

Example 11.26.
(a) Let K ⊂ L be a field extension, and let a ∈ L. Then {a} is algebraically dependent over K if

and only if a is algebraic over K.

(b) Let R = K[x1, . . . ,xn] be the polynomial ring in n variables over a field K, and let

L = QuotR =

{
f
g

: f ,g ∈ K[x1, . . . ,xn],g 6= 0
}

be its quotient field, i. e. the field of formal rational functions in n variables over K.

This field is usually denoted by K(x1, . . . ,xn), and thus by the same round bracket notation
as for the smallest extension field of K containing given elements of a larger field — which
can be described explicitly as the set of all rational functions in these elements with coeffi-
cients in K. Note that this ambiguity is completely analogous to the square bracket notation
K[x1, . . . ,xn] which is also used to denote both polynomial expressions in formal variables (to
obtain the polynomial ring) or in given elements of an extension ring (to form the subalgebra
generated by these elements).
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The set B = {x1, . . . ,xn} is clearly a transcendence basis of L over K: these elements are
obviously algebraically independent by definition, and the smallest subfield of L containing
K and x1, . . . ,xn is just L itself.

Remark 11.27. In contrast to what one might expect, the definition of a transcendence basis B of a
field extension K ⊂ L does not state that L is generated by B in some sense — it is only generated by
B up to algebraic extensions. For example, the empty set is a transcendence basis of every algebraic
field extension.

It is true however that a transcendence basis is a “maximal algebraically independent subset”: any
element a ∈ L\B is algebraic over K(B), and thus B∪{a} is algebraically dependent.

As expected, we can now show that transcendence bases always exist, and that all transcendence
bases of a given field extension have the same number of elements.

Lemma 11.28 (Existence of transcendence bases). Let K ⊂ L be a field extension. Moreover, let
A⊂ L be algebraically independent over K, and let C ⊂ L be a subset such that L is algebraic over
K(C). Then A can be extended by a suitable subset of C to a transcendence basis of L over K.

In particular, every field extension has a transcendence basis.

Proof. Let

M = {B : B is algebraically independent over K with A⊂ B⊂ A∪C}.

Then every totally ordered subset N ⊂ M has an upper bound B: if N = /0 we can take A ∈ M,
otherwise

⋃
B∈N B. Note that the latter is indeed an element of M:

• Assume that
⋃

B∈N B is algebraically dependent. Then f (b1, . . . ,bn) = 0 for a non-zero poly-
nomial f over K and distinct elements b1, . . . ,bn ∈

⋃
B∈N B. But as N is totally ordered we

must already have b1, . . . ,bn ∈ B for some B ∈ N, in contradiction to B being algebraically
independent over K.

• We have A⊂
⋃

B∈N B⊂ A∪C since A⊂ B⊂ A∪C for all B ∈ N.

Hence M has a maximal element B. We claim that B is a transcendence basis of L over K. In fact, as
an element of M we know that B is algebraically independent. Moreover, since B is maximal every
element of C is algebraic over K(B), hence K(C) is algebraic over K(B) [G3, Exercise 2.27 (a)], and
so L is algebraic over K(B) by Lemma 9.6 (b) since L is algebraic over K(C) by assumption. �

Proposition and Definition 11.29 (Transcendence degree). Let K ⊂ L be a field extension. If L has
a finite transcendence basis over K, then all such transcendence bases are finite and have the same
number n of elements. In this case we call this number n the transcendence degree trdegK L of L
over K. Otherwise, we set formally trdegK L = ∞.

Proof. Let B and C be transcendence bases of L over K, and assume that B = {b1, . . . ,bn} has n
elements. By symmetry, it suffices to show that |C| ≤ |B|. We will prove this by induction on n, with
the case n = 0 being obvious since then K ⊂ L is algebraic, and hence necessarily C = /0.

So assume now that n > 0. As we are done if C ⊂ B, we can pick an element c ∈ C\B, which
is necessarily transcendental. By Lemma 11.28 we can extend it to a transcendence basis B′ by
elements of B. Note that B′ can have at most n elements: the set {c,b1, . . . ,bn} is algebraically
dependent since B is a transcendence basis.

So B′ and C are two transcendence bases of L over K that both contain c. Hence B′\{c} and C\{c}
are two transcendence bases of L over K(c). By induction this means that |B′\{c}| = |C\{c}|, and
hence that |C|= |C\{c}|+1 = |B′\{c}|+1≤ n = |B| as desired. �

Example 11.30.
(a) A field extension is algebraic if and only if it has transcendence degree 0.
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(b) Given that π is transcendental over Q, the field extensions Q ⊂ Q(π) and Q ⊂ Q(π,
√

2)
both have transcendence degree 1, with {π} as a transcendence basis. The field extension
Q ⊂ C has infinite transcendence degree, since the set of all rational functions in finitely
many elements with coefficients in Q is countable, whereas C is uncountable.

(c) The quotient field K(x1, . . . ,xn) of the polynomial ring K[x1, . . . ,xn] has transcendence degree
n over K, since {x1, . . . ,xn} is a transcendence basis by Example 11.26 (b).

With the notion of transcendence degree we can now give another interpretation of the dimension
of an irreducible variety — or more generally of a finitely generated algebra over a field which is a
domain.

Proposition 11.31 (Transcendence degree as dimension). Let R be a finitely generated algebra over
a field K, and assume that R is an integral domain. Then dimR = trdegK QuotR.

Proof. Let K[z1, . . . ,zn]→ R be a Noether normalization as in Proposition 10.5, where n = dimR
by Remark 11.10. Then QuotR is algebraic over QuotK[z1, . . . ,zn] = K(z1, . . . ,zn): if a,b ∈ R with
b 6= 0 then a and b are integral over K[z1, . . . ,zn], hence algebraic over K(z1, . . . ,zn). Therefore
K(z1, . . . ,zn)(a,b) is algebraic over K(z1, . . . ,zn) [G3, Exercise 2.27 (a)], which implies that a

b ∈
QuotR is algebraic over K(z1, . . . ,zn).

But this means that the transcendence basis {z1, . . . ,zn} of K(z1, . . . ,zn) over K (see Example 11.26
(b)) is also a transcendence basis of QuotR over K, i. e. that trdegK QuotR = n = dimR. �

Exercise 11.32. Let K be a field, and let R be a K-algebra which is an integral domain. If R is finitely
generated we know by Proposition 11.31 that dimR = trdegK QuotR. Now drop the assumption that
R is finitely generated and show:

(a) dimR≤ trdegK QuotR.

(b) The inequality in (a) may be strict.

Exercise 11.33. Let X ⊂ An
K and Y ⊂ Am

K be varieties over a field K. Prove:

(a) dim(X×Y ) = dimX +dimY .

(b) If n=m then every irreducible component of X∩Y has dimension at least dimX +dimY−n.
22

Finally, another approach to the notion of dimension is given by linearization. If a is a point of a
variety X ⊂An

K over a field K we can try to approximate X around a by an affine linear space in An
K ,

and consider its dimension to be some sort of local dimension of X at a. Let us describe the precise
construction of this linear space.

Construction 11.34 (Tangent spaces). Let us consider a variety X ⊂ An
K with coordinate ring

A(X) = K[x1, . . . ,xn]/I(X), and let a = (a1, . . . ,an) ∈ X . By a linear change of coordinates
yi := xi−ai we can shift a to the origin.

Consider the “differential” map

d : K[x1, . . . ,xn]→ K[y1, . . . ,yn], f 7→
n

∑
i=1

∂ f
∂xi

(a) · yi,

where ∂ f
∂xi

denotes the formal derivative of f with respect to xi [G1, Exer-
cise 9.10]. It can be thought of as assigning to a polynomial f its linear
term in the Taylor expansion at the point a. We then define the tangent
space to X at a to be

TaX :=V ({d f : f ∈ I(X)}) ⊂ Kn, (∗)

X

a

TaX

i. e. we take all equations describing X , linearize them at the point a, and take the common zero locus
of these linearizations. As in the picture above we can therefore think of TaX as the linear space that
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gives the best approximation of X at a. Note that it suffices in (∗) to let f range over a generating
set for I(X), since for f ,g ∈ I(X) and h ∈ K[x1, . . . ,xn] we have

d( f +g) = d f +dg and d(h f ) = h(a)d f + f (a)dh = h(a)d f .

In order to transfer these ideas to other non-geometric cases we need an alternative description of the
tangent space: let P = I(a) = (y1, . . . ,yn)EA(X) be the (maximal) ideal of the point a, and consider
the K-linear map

ϕ : P→ HomK(TaX ,K), f 7→ d f |TaX

(that is well-defined by the definition (∗) of TaX). It is clearly surjective since every linear map on
TaX must be a linear combination of the coordinate functions. Moreover, we claim that kerϕ = P2:

“⊂” Let ϕ( f ) = d f |TaX = 0. Note that L := {dg : g ∈ I(X)} is a linear subspace of 〈y1, . . . ,yn 〉
of some dimension k. Its zero locus TaX then has dimension n− k. Hence the space of all
linear forms vanishing on TaX has dimension k again and clearly contains L, and thus must
be equal to L. As d f lies in this space, we conclude that d f = dg for some g ∈ I(X). Then
d( f −g) = 0, and thus the Taylor expansion of f −g at a does not contain constant or linear
terms. Hence f = f −g ∈ P2.

“⊃” The K-vector space P2 is generated by products f g for f ,g ∈ P = I(a), and we clearly have
ϕ( f g) = f (a)dg|TaX +g(a)d f |TaX = 0 since f (a) = g(a) = 0.

So by the homomorphism theorem we get a natural isomorphism P/P2 → HomK(TaX ,K) of K-
vector spaces. In other words, the tangent space TaX is naturally the dual vector space of P/P2. In
particular, its dimension is dimK TaX = dimK P/P2.

Remark 11.35 (Tangent spaces are local). Let P be a maximal ideal in a ring R, and let K = R/P.
Then the R-module P/P2 is also a K-vector space (with the same multiplication), and the classes of
elements of S = R\P in K are invertible. Hence localizing P/P2 at S is an isomorphism of K-vector
spaces, i. e. we get

P/P2 ∼= S−1(P/P2) ∼= S−1P/S−1P2

by Corollary 6.22 (b). So the tangent space TaX of a variety X at a point a ∈ X as in Construction
11.34 can equally well be obtained from the local ring of X at a.

This observation allows us to assign to any local ring R (with maximal ideal P and K = R/P) a
number dimK P/P2 that can be interpreted as the dimension of the tangent space if R is the ring of
local functions on a variety at a point. Let us see how this number compares to the actual dimension
dimR of R. For simplicity, we will restrict our attention to Noetherian rings.

Lemma 11.36. Let R be a local Noetherian ring with maximal ideal P, and set K = R/P.

(a) The number dimK P/P2 is the minimum number of generators for the ideal P.

(b) dimR≤ dimK P/P2 < ∞.

Proof. Of course, the ideal P is finitely generated since R is Noetherian. Let n be the minimum
number of generators for P.

(a) Let P = (a1, . . . ,an). Then a1, . . . ,an generate P/P2 as an R/P-vector space, and thus
dimK P/P2 ≤ n. Moreover, if a1, . . . ,an were linearly dependent then after relabeling
a1, . . . ,an−1 would still generate P/P2 — but then Nakayama’s Lemma as in Exercise 6.16
(b) (for M = I = P) implies that a1, . . . ,an−1 generate P as an R-module, in contradiction to
the minimality of n. Hence dimK P/P2 = n.

(b) By Remark 11.5 (c), Remark 11.5 (a), and Corollary 11.17 we have dimR = dimRP =
codimP≤ n < ∞. Hence the result follows since n = dimK P/P2 by (a). �

Example 11.37. Consider the curves X1 and X2 in A2
R with ideals I(X1) = (x2− x2

1) and I(X2) =

(x2
2− x2

1− x3
1), respectively, as in the picture below.
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T0X1

T0X2

x1

x2 x2

x1

X1 =V (x2− x2
1) X2 =V (x2

2− x2
1− x3

1)

By Construction 11.34, their tangent spaces T0X1 and T0X2 at the origin are the zero loci of the linear
parts of their defining equations, i. e.

T0X1 =V (x2) is the x1-axis, and

T0X2 =V (0) is all of R2.

Hence for X1, the tangent space T0X1 has the same dimension as X1, i. e. the first inequality in
Lemma 11.36 (b) is an equality. Geometrically, this means that X1 has a “good” approximation at 0
by a linear space of the same dimension — which is the usual understanding of a tangent space. In
the case of X2 however, there is no reasonable approximation at 0 by a linear space of dimension 1.
Consequently, the dimension of the tangent space is bigger than that of X , i. e. the first inequality of
Lemma 11.36 (b) is strict. This is usually expressed by saying that the origin is a singular point of
X2, whereas it is a regular or smooth point of X1. The precise definition of these terms is as follows.

Definition 11.38 (Regular local rings, regular points of a variety).

(a) Let R be a local ring with maximal ideal P, and set K = R/P. We say that R is regular if it
is Noetherian and dimR = dimK P/P2.

(b) Let X be a variety. A point a ∈ X is called regular or smooth if its ring of local functions
A(X)I(a) as in Example 6.5 (d) is regular, i. e. by Construction 11.34 if dimX = dimTaX
(note that A(X)I(a) is always Noetherian by Remark 7.15 and Exercise 7.23). Otherwise we
say that a is a singular point of X .

Example 11.39.

(a) Any field is a regular local ring (of dimension 0).

(b) Let X ⊂ An
K be a variety over a field K, with ideal I(X) = ( f1, . . . , fr)EK[x1, . . . ,xn]. By

Construction 11.34, the tangent space TaX to X at a point a ∈ X is the kernel of the Jacobian
matrix

J f (a) :=
(

∂ fi

∂x j
(a)
)

1≤i≤r
1≤ j≤n

.

Hence a is a regular point of X if and only if dimX = dimK kerJ f (a). In particular, this is
the case if J f (a) has maximal row rank r, because then

dimX ≤ dimK kerJ f (a) (Lemma 11.36 (b))
= n− r

≤ dimX ,

since by Remark 11.18 every irreducible component of X = V ( f1, . . . , fr) has dimension at
least n− r. Note that this fits well with the implicit function theorem [G2, Proposition 27.9]
in analysis, which states that (in the case K = R) a Jacobi matrix with maximal row rank at
a point a guarantees that X is locally the graph of a continuously differentiable function, and
thus that X is regular at a in the sense of Example 11.37.

Explicitly, the standard parabola X1 in Example 11.37 is regular at every point since its
Jacobian matrix (−2x1 1) has full row rank everywhere, whereas the curve X2 has a singular
point at the origin as its Jacobian matrix (−2x1−3x2

1 2x2) vanishes there.
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Finally, we will prove the important result that any regular local ring is an integral domain — a
statement that is easy to understand geometrically since a variety that is regular at a point in the
sense of Example 11.37 should not consist of several components that meet in this point.

Proposition 11.40. Any regular local ring is an integral domain.

Proof. Let R be a regular local ring of dimension n with maximal ideal P, and set K = R/P. We will
prove the statement of the proposition by induction on n. For n = 0 we have dimK P/P2 = 0, hence
P = P2, so P = 0 by Nakayama’s Lemma as in Exercise 6.16 (a). But if the zero ideal is maximal
then R is a field, and hence obviously an integral domain.

So let now n > 0, and let P1, . . . ,Pr be the minimal primes over the zero ideal as in Corollary 8.30.
Note that P 6⊂ P2∪P1∪ ·· ·∪Pr since otherwise by Exercise 2.10 (c) we would have P ⊂ P2 (hence
P = P2, and thus n = 0 by Lemma 11.36 (b)) or P ⊂ Pi for some i (hence Pj ⊂ P ⊂ Pi for all j, so
r = 1 and P is the unique maximal and the unique minimal prime, which means again that n = 0).
We can therefore find an element a ∈ P with a /∈ P2 and a /∈ Pi for all i.

Consider the ring R/(a), which is again local (with maximal ideal P/(a), and (P/(a))/(P/(a))2 ∼=
P/(P2 +(a))) and Noetherian (by Remark 7.8 (b)). We will show that it is regular of dimension
n−1:

• As a /∈ P2, we can extend the element a ∈ P/P2 to a basis (a,a2, . . . ,an) of P/P2. Then
a2, . . . ,an generate the vector space P/(P2 +(a)), and hence dimP/(P2 +(a))≤ n−1.

• Let Pi = Q0 ( · · ·( Qn = P be a maximal chain of prime ideals in R; note that it has to start
with a minimal prime ideal Pi and end with P. As a ∈ P, we can arrange this by Exercise
11.16 (a) so that a ∈ Q1. Then Q1/(a) ( · · · ( Qn/(a) is a chain of prime ideals of length
n−1 in R/(a), and so dimR/(a)≥ n−1.

Together with Lemma 11.36 (b) we conclude that

n−1≤ dimR/(a)≤ dimP/(P2 +(a))≤ n−1,

and hence that R/(a) is regular of dimension n−1.

By induction, this means that R/(a) is an integral domain, and hence by Lemma 2.3 (a) that (a) is
a prime ideal. Hence we must have Pi ⊂ (a) for some i. This means for any b ∈ Pi that b = ac for
some c ∈ R, hence c ∈ Pi since a /∈ Pi and Pi is prime, and therefore b ∈ P ·Pi. In total, this means
that Pi = P ·Pi, and so Pi = 0 by Nakayama as in Exercise 6.16 (a). Thus the zero ideal is prime, i. e.
R is an integral domain. �
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