Character Theory of Finite Groups - Exercise Sheet 2
Jun.-Prof. Dr. Caroline Lassueur
Due date: Thursday, the 19th of May 2022, 14:00

Throughout this exercise sheet K denotes a field of arbitrary characteristic, ($G, \cdot \cdot$) a finite group with neutral element 1_{G}, and V a finite-dimensional K-vector space.

Exercise 5 (Alternative proof of Maschke's Theorem over the field \mathbb{C}.)

Assume $K=\mathbb{C}$ and let $\rho: G \longrightarrow \mathrm{GL}(V)$ be a \mathbb{C}-representation of G.
(a) Prove that there exists a G-invariant scalar product $\langle\rangle:, V \times V \longrightarrow \mathbb{C}$, i.e. such that

$$
\langle\rho(g)(u), \rho(g)(v)\rangle=\langle u, v\rangle \quad \forall g \in G, \forall u, v \in V .
$$

[Hint: consider an arbitrary scalar product on $V, \operatorname{say}():, V \times V \longrightarrow \mathbb{C}$, which is not necessarily G-invariant. Use a sum on the elements of G weighted by the group order in order to produce a new G-invariant scalar product on V.]
(b) Deduce that every G-invariant subspace W of V admits a G-invariant complement. [Hint: consider the orthogonal complement of W.]

Exercise 6

Assume we are in the situation of Proposition 4.3. Namely, we are given a K-vector space ($V,+, \cdot$) and we define an external multiplication on V by the elements of $K G$ through a left action $G \times V \longrightarrow V,(g, v) \mapsto g \cdot v$ of G on V which we extend by K-linearity to the whole of $K G$. Thus, we now have a $K G$-module $(V,+, \cdot)$, where the new external multiplication $\cdot: K G \longrightarrow V$ extends the initial external multiplication on V by the elements of K.
Prove that checking the $K G$-module axioms (Appendix A, Definition A.1) for $(V,+, \cdot)$ is equivalent to checking the following axioms:
(1) $(g h) \cdot v=g \cdot(h \cdot v)$,
(2) $1_{G} \cdot v=v$,
(4) $g \cdot(u+v)=g \cdot u+g \cdot v$,
(3) $g \cdot(\lambda v)=\lambda(g \cdot v)=(\lambda g) \cdot v$,
for all $g, h \in G, \lambda \in K$ and $u, v \in V$.

Exercise 7 (Exercise to hand in / 8 points)

(a) Check the details of the proof of Proposition 4.3.
[Hint: use Exercise 6.]
(b) Use Proposition 4.3 to express the trivial representation in terms of $K G$-modules.
(c) Use Proposition 4.3 to express the regular representation in terms of $K G$-modules. Prove that the $K G$-module you have obtained is isomorphic to $K G$ (the group algebra) seen as a left $K G$-module over itself.
(d) Schur's Lemma for matrix representations.

Let $n, n^{\prime} \in \mathbb{N}$. Let $R: G \longrightarrow \mathrm{GL}_{n}(K)$ and $R^{\prime}: G \longrightarrow \mathrm{GL}_{n^{\prime}}(K)$ be two irreducible matrix representations. Prove that if there exists $A \in M_{n \times n^{\prime}}(K) \backslash\{0\}$ such that $A R^{\prime}(g)=R(g) A$ for every $g \in G$, then $n=n^{\prime}$ and A is invertible (in particular $R \sim R^{\prime}$).

Exercise 8

Prove the following assertions.
(a) The regular \mathbb{C}-representation of any finite group is faithful.
(b) Every finite simple group G admits a faithful irreducible \mathbb{C}-representation.
(c) If $G=C_{n_{1}} \times \cdots \times C_{n_{r}}$ is a product of finite cyclic groups of order $n_{1}, \ldots, n_{r}\left(r \in \mathbb{Z}_{>0}\right)$, then G admits a faithful \mathbb{C}-representation of degree r.

