Character Theory of Finite Groups — Exercise Sheet 3	TU Kaiserslautern
JUNPROF. DR. CAROLINE LASSUEUR	Bernhard Böhmler
Due date: Thursday, the 2nd of June 2022, 14:00	SS 2022

Throughout this exercise sheet $K = \mathbb{C}$ is the field of complex numbers, (G, \cdot) is a finite group, and V a finite-dimensional \mathbb{C} -vector space.

Exercise 9

Let $\rho_V : G \longrightarrow GL(V)$ be a \mathbb{C} -representation and let χ_V be its character. Prove the following statements.

- (a) If $g \in G$ is conjugate to g^{-1} , then $\chi_V(g) \in \mathbb{R}$.
- (b) If $g \in G$ is an element of order 2, then $\chi_V(g) \in \mathbb{Z}$ and $\chi_V(g) \equiv \chi_V(1) \pmod{2}$.

EXERCISE 10 (Exercise to hand in / 8 points)

Let $\rho_V : G \longrightarrow GL(V)$ be a \mathbb{C} -representation.

- (a) Prove that:
 - (i) the dual space $V^* := \text{Hom}_{\mathbb{C}}(V, \mathbb{C})$ is endowed with the structure of a $\mathbb{C}G$ -module via

$$\begin{array}{rccc} G \times V^* & \longrightarrow & V^* \\ (g, f) & \mapsto & g.f \end{array}$$

where $(g.f)(v) := f(g^{-1}v) \forall v \in V$;

- (ii) the character of the associated C-representation ρ_{V^*} is then $\chi_{V^*} = \overline{\chi_V}$; and
- (iii) if ρ_V decomposes as a direct sum $\rho_{V_1} \oplus \rho_{V_2}$ of two subrepresentations, then $\rho_{V^*} = \rho_{V_1^*} \oplus \rho_{V_2^*}$.
- (b) Determine the duals of the 3 irreducible representations of S_3 given in Example 2(d).

Exercise 11

- (a) Exhibit a \mathbb{C} -basis of Cl(G) and deduce that $\dim_{\mathbb{C}} Cl(G) = |C(G)|$.
- (b) Verify that the form

$$\langle -, - \rangle_G : \mathcal{F}(G, \mathbb{C}) \times \mathcal{F}(G, \mathbb{C}) \longrightarrow \mathbb{C}, (f_1, f_2) \mapsto \langle f_1, f_2 \rangle_G := \frac{1}{|G|} \sum_{g \in G} f_1(g) \overline{f_2(g)}$$

is sesquilinear and Hermitian.

Exercise 12

Let *V* be a $\mathbb{C}G$ -module (i.e. finite dimensional) with character χ_V . Consider the \mathbb{C} -subspace $V^G := \{v \in V \mid g \cdot v = v \forall g \in G\}$. Prove that

$$\dim_{\mathbb{C}} V^G = \frac{1}{|G|} \sum_{g \in G} \chi_V(g)$$

in two different ways:

- 1. considering the scalar product of χ_V with the trivial character $\mathbf{1}_G$;
- 2. seeing V^G as the image of the projector $\pi: V \longrightarrow V, v \mapsto \frac{1}{|G|} \sum_{g \in G} g \cdot v$.