Character Theory of Finite Groups - Exercise Sheet 4
Jun.-Prof. Dr. Caroline Lassueur
Due date: Thursday, the 16th of June 2022, 14:00

Throughout this exercise sheet $K=\mathbb{C}$ is the field of complex numbers, (G, \cdot) is a finite group.

Exercise 13

(a) Prove that the degree formula can be read off from the 2nd Orthogonality Relations.
(b) Use the degree formula to prove again that if G is a finite abelian group, then

$$
\operatorname{Irr}(G)=\{\text { linear characters of } G\} .
$$

Exercise 14 (Exercise to hand in / 8 points)

(a) Let G be a finite group. Set $X:=X(G)$ and

$$
C:=\left[\begin{array}{ccccc}
\left|C_{G}\left(g_{1}\right)\right| \\
0 & 0 & 0 & \cdots \cdots \cdots \cdots 0 \\
\vdots & \left|C_{G}\left(g_{2}\right)\right| & \ddots & \ddots & \vdots \\
\vdots & \ddots & \vdots & \ddots & \ddots \\
\vdots & \ddots & \vdots & 0 \\
0 & \cdots \cdots \cdots \cdots \cdots & \cdots & \left|C_{G}\left(g_{r}\right)\right|
\end{array}\right] \in M_{r}(\mathbb{C}) .
$$

Prove that the 1st Orthogonality Relations can be rewritten under the form

$$
X C^{-1} \overline{\mathrm{X}}^{\mathrm{Tr}}=I_{r}
$$

where $\bar{X}^{\operatorname{Tr}}$ denotes the transpose of the complex-conjugate \bar{X} of the character table X of G.
(b) Prove that the character table is invertible.
(c) Compute the matrix C for $G=S_{3}$ and $G=C_{10}$, and verify that the formula in (a) holds.
(d) Compute the character tables of the Klein-four group $C_{2} \times C_{2}$ and of the elementary abelian 2-group $C_{2} \times C_{2} \times C_{2}$ of rank 3 .

