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Exercise 9.9

Let V be a CG-module affording the character y,, . Consider the C-subspace of fixed points under
the action of G, thatis, V¢ :={ve V| g-v =vVYge G}. Prove that

_ 1
dimg V< = = > xv(9)
Gl =
in two different ways:

1. considering the scalar product of x,, with the trivial character 1¢;

2. seeing V¢ as the image of the projector 7: V — V,v — ﬁ dec g-v.

10 The Reqular Character

Recall from Example 1(d) that a finite G-set X induces a permutation representation

px: G — GL(V)
g = px(g):V—V, e —egx

where V is a C-vector space with basis {es | x € X} (i.e. indexed by the set X). Given g € G write
Fixx(g) := {x € X | g - x = x} for the set of fixed points of g on X.

Proposition 10.1 (Character of a permutation representation)

Let X be a G-set and let x, denote the character of the associated permutation representation p,.
Then
xx(g) =|Fixx(g)] VgeG.

Proof: Let g € G. The diagonal entries of the matrix of p,(g) expressed in the basis B := {e, | x € X} are:

1 ifg-x=x
((px(g))B)XX= {o fgox % x VxeX.

Hence taking traces, we get x,(g9) = X cx ((px(g))B>XX = |Fixx(g)|- [ |

For the action of G on itself by left multiplication, by Example 1(d), py = preq is the regular represen-
tation of G. In this case, we obtain the values of the reqular character.

Corollary 10.2 (The regular character)

Let x.q denote the character of the reqular representation preq of G. Then

|G| ifg=1g,
Xreg(g) :{

0 otherwise.
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Proof: This follows immediately from Proposition 10.1 since Fixg(1g) = G and Fixg(g) = & for every
ge G\{lc). .

Theorem 10.3 (Decomposition of the reqular representation)

The multiplicity of an irreducible C-representation of G as a constituent of p.,, equals its degree.
In other words,

Xreg = Z x(Mx .

Xx€Elrr(G)

Proof: By Corollary 9.3 we have x,q = > cin(6)Xreq: X0 X» Where for each x € Irr(G),

1 — |G
<Xreg'X>G=?Z Xreg(g) X(g)=%X(1)=X(1)
Gl 2 Xeol9) cl
=61g|G|
by Cor. 10.2
The claim follows. ]

Remark 10.4

In particular, the theorem tells us that each irreducible C-representation (considered up to equiv-
alence) occurs with multiplicity at least one in a decomposition of the reqular representation into
irreducible subrepresentations.

Corollary 10.5 (Degree formula)

The order of the group G is given in terms of its irreducible character by the formula

Gl= > x(1)*.

Xx€Elrr(G)

Proof: Evaluating the regular character at 1 € G yields

Gl = Xeg(D) = Do x(x(1) = > x(1)?.

x€lrr(G) x€lrr(G) [ ]

Exercise 10.6

Use the degree formula to give a second proof of Proposition 6.1 when K = C. In other words,
prove that if G is a finite abelian group, then

Irr(G) = Lin(G),

the set of linear characters of G.




Chapter 4. The Character Table

In Chapter 3 we have proved that for any finite group G the equality | Irr(G)| = |C(G)| =: r holds. Thus
the values of the irreducible characters of G can be recorded in an r x r-matrix, called the character
table of G. The entries of this matrix are related to each other in subtle manners, many of which are
encapsulated in the 1st Orthogonality Relations and their consequences, as for example the degree
formula. Our aim in this chapter is to develop further tools and methods to compute character tables.

Notation: throughout this chapter, unless otherwise specified, we let:
- G denote a finite group;
- K := C be the field of complex numbers;
(G| = |C(G)] =
- rr(G) = {x;.-.., x,} denote the set of pairwise distinct irreducible characters of G;

- C1 = [g1],...,C = [g,] denote the conjugacy classes of G, where g1,..., g, is a fixed set of
representatives; and

- we use the convention that y1 =15 and g1 = 1€ G.

In general, unless otherwise stated, all groups considered are assumed to be finite and all C-vector
spaces [/ modules over the group algebra considered are assumed to be finite-dimensional.

11 The Character Table of a Finite Group

Definition 11.1 (Character table)

The character table of G is the matrix X(G) := (Xz(gj)> eM(C).
if

Example 4 (The character table of a cyclic group)

Let G ={g | g" = 1) be cyclic of order n € Z-. Since G is abelian,
Irr(G) = {linear characters of G}

by Proposition 6.1 and | Irr(G)| = |G| = n. Moreover, each conjugacy class is a singleton:

VIi<j<r=n: Cjz{gj}andwesetgj:zgf_1.

34
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Let { be a primitive n-th root of unity in C, so that {{' | 1 < i < n} are all the n-th roots of unity.
Now, each x; : G — C* is a group homomorphism and is determined by x;(g), which has to be an
n-th root of 1¢. Therefore, we have n possibilities for x;(g). We set

xi(g)=¢"" vi<i<n = x(g)=C""Y vi<i<n0<j<n-—1
Thus the character table of G is

X(@) = (31099 12izy = (l0™) 121z = (€707),
<j<n <j<n

(<
J<

which we visualise as follows:

1 g 92 gnf1
X =1c| 1 1 1 R
w» |1 ¢ @ ..
X3 1 52 54 o 52(n71)
X, 1 (n—1 (2(n—1) o C(n—1)2

Ex

ample 5 (The character table of S3)

Let now G := S3 be the symmetric group on 3 letters. Recall from the AGS/Einfiihrung in die
Algebra that the conjugacy classes of S3 are

Ci={Id}, G = {(12),(13),(23)}, G = {(123),(132))

G| =1,|G| =3,

Gl =2.

= r=3,

In Example 2(d) we have exhibited three non-equivalent irreducible matrix representations of Ss3,
which we denoted p;, p,, p;. For each 1 < i < 3 let x; be the character of p; and n; be its degree,
so that n1 = n = 1 and n3 = 2. Hence

n?+n3+n3=6=|G|.

Therefore, the degree formula tells us that p,, p,, p; are all ‘ Id (12) (123)

the irreducible matrix representations of Ss, up to equivalence. 1 1 1
o : X1

We note that n1 = n, = 1, n3 = 2 is in fact the unique v |1 R 1

solution (up to relabelling) to the equation given by the degree X | 2 1

formula! Taking traces of the matrices in Example 2(d) yields

In

the character table of Ss.

the next sections we want to develop further techniques to compute character tables of finite groups,

before we come back to further examples of such tables for larger groups.

Ex

ercise 11.2

Compute the character table of the Klein-four group ¢, x & and of G x G x G.
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12 The 2nd Orthogonality Relations

The 1st Orthogonality Relations provide us with orthogonality relations between the rows of the char-
acter table. They can be rewritten as follows in terms of matrices.

Exercise 12.1

Let G be a finite group. Set X := X(G) and

|CG(Q1)‘ [0 . 0
0 [Calgo)l 5
€= | eM(C)
"0
[0 I 0 |Cc(g,)\

Use the Orbit-Stabiliser Theorem in order to prove that the 1st Orthogonality Relations can be

rewritten under the form .
XC X" =1,

where X' denotes the transpose of the complex-conjugate X of the character table X of G.
Deduce that the character table is invertible.

There are also some orthogonality relations between the columns of the character table. These can
easily be deduced from the 1st Orthogonality Relations given above in terms of matrices.

Theorem 12.2 (2nd Orthogonality Relations)

With the notation of Exercise 12.1 we have

XX =cC.
In other words,
i -—6-|G|—6--C i V1<i,j<
Z x(gix(gj) = Mgl ~ ij|Ca(gi)] sSLfsTr.

Xx€Elrr(G)

Proof: Taking complex conjugation of the formula given by the 1st Orthogonality Relations (Exercise 12.1)

yields:
xc'X"=1,  —  XC'X"=|

4 . . o 4 - -1
Now, since X is invertible, so are all the matrices in the above equations and hence X™ = (XC~")™".

It follows that - — o

X"X=(XCT")"X=CX X=C.
The second formula is now obtained by considering the entry (i, j) in the above matrix equation for all
1<ij<r |

Exercise 12.3

Prove that the degree formula can be read off from the 2nd Orthogonality Relations.
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13 Tensor Products of Representations and Characters

Tensor products of vector spaces and matrices are recalled/introduced in Appendix C. We are now going
to use this construction to build products of characters.

Proposition 13.1

Let G and H be finite groups, and let p, : G — GL(V) and p,, : H — GL(W) be C-
representations with characters x,, and x,, respectively. Then

py®py: GxH — GLV®cW)
(g.h) = (py®py)(g. h):=py,(g9)®py(h)

(where p\,(g) ® py(h) is the tensor product of the C-endomorphisms p,,(g) : V — V and py, (h) :
W — W as defined in Lemma-Definition C.4) is a C-representation of G x H, called the tensor
product of p,, and p,,, and the corresponding character, which we denote by Xv@o W is

Xveew = Xv  Xw

where xy, - x/(g,h) :== x,(9) - xyw(h) ¥ (g, h) e G x H.

Proof: First note that p, ® p,, is well-defined by Lemma-Definition C.4 and it is a group homomorphism
because

(Pv ® pw)(g192, hiha)[v @ w] = (py(g9192) ® py (h1h2))[v @ w]
= pv(9192)[v] ® py (h1h2)[w]
= pv(91) © py(g2)[v] ® pw (1) © py (h2)[w]
= pv(91) ® pw (h1)[py(92)[v] ® py (ha)[w]]
= (pv(91) ® pw(h1)) © (pv(92) ® py (h2))[v @ W]
= (bv ® pw) (g1, h1) o (py ® pw) (g2, h2)[v @ w]

vV g1,92€ G, hi,h, e H, ve V, we W. Furthermore, for each g € G and each he H,
Xvaw(9.h) =Tr ((py ® pw)(g. h)) = Tr (py(9) ® pw(h)) = Tr (py(9)) - Tr (pw(h)) = xv(9) - xw(h)

by Lemma-Definition C.4, hence xyg_y = xv - Xw- |

Remark 13.2

The diagonal inclusion ¢t : G — G x G,g — (g,g) of G in the product G x G is a group
homomorphism with ((G) =~ G. Therefore, if G = H, then

G—>GxG“C,g—(9.9)— xv(g) xw(g)

becomes a character of G, which we also denote by x, - x; -

Corollary 13.3
If G and H are finite groups, then Irr(G x H) = {x - ¢ | x € Irr(G), Y € Irr(H)}.

Proof: [Exercise]. Hint: Use Corollary 9.8(d) and the degree formula. |



