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Exercise 13.4

(a) If λ� χ P IrrpGq and λp1q “ 1, then λ ¨ χ P IrrpGq.

(b) The set LinpGq “ tχ P IrrpGq | χp1q “ 1u of linear characters of a finite group G forms a
group for the product of characters.

14 Normal Subgroups and Inflation

Whenever a group homomorphism G ›Ñ H and a representation of H are given, we obtain a represen-
tation of G by composition. In particular, we want to apply this principle to normal subgroups N E G
and the corresponding quotient homomorphism, which we always denote by π : G ›Ñ G{N� � fiÑ �N .

We will see that by this means, copies of the character tables of quotient groups of G all appear in the
character table of G. This observation, although straightforward, will allow us to fill out the character
table of a group very rapidly, provided it possesses normal subgroups.

Definition 14.1 (Inflation)

Let N E G and let π : G ›Ñ G{N� � fiÑ �N be the quotient homomorphism. Given a C-
representation ρ : G{N ›Ñ GLpV q, we set

InfGG{Npρq :“ ρ ˝ π : G ›Ñ GLpV q �

This is a C-representation of G (see Exercise 9.10), called the inflation of ρ from G{N to G.

Note that some texts also call InfGG{Npρq the lift or the restriction of ρ along π.

Remark 14.2

(a) If the character afforded by ρ is χ , then by Exercise 9.10(i), the character afforded by InfGG{Npρq

is InfGG{Npχq :“ χ ˝ π. We also call it the inflation of χ from G{N to G. Clearly, the values
of InfGG{Npχq are given by the formula

InfGG{Npχqp�q “ χp�Nq @ � P G �

(b) By Exercise 9.10(iii), if ρ (resp. χ) is irreducible, then so is InfGG{Npρq (resp. InfGG{Npχq)

Exercise 14.3

Let N E G and let ρ : G{N ›Ñ GLpV q be a C-representation of G{N . Compute the kernel of
InfGG{Npρq provided that ρ is faithful.

Definition 14.4 (Kernel of a character )

The kernel of a character χ of G is kerpχq :“ t� P G | χp�q “ χp1qu.
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Example 6

(a) χ “ 1G the trivial character ñ kerpχq “ G.

(b) G “ S3, χ “ χ2 the sign character ñ kerpχq “ C1 Y C3 “ xp123qy; whereas kerpχ3q “ t1u.
(See Example 5.)

Lemma 14.5

Let ρ : G ›Ñ GLpV q be a C-representation of G affording the character ψ. Then kerpψq “ kerpρq,
thus it is a normal subgroup of G.

Proof : [Exercise]

Theorem 14.6

Let N E G. Then

InfGG{N : tcharacters of G{Nu ›Ñ tcharacters ψ of G | N § kerpψqu

χ fiÑ InfGG{Npχq

is a bijection and so is its restriction to the irreducible characters

InfGG{N : IrrpG{Nq ›Ñ tψ P IrrpGq | N § kerpψqu

χ fiÑ InfGG{Npχq .

Proof : First we prove that the first map is well-defined and bijective.

¨ Let χ be a character of G{N . By Remark 14.2, N is in the kernel of InfGG{Npχq, hence the first map
is well-defined.

¨ Now let ψ be a character of G with N § kerpψq and assume ψ is afforded by the C-representation
ρ : G ›Ñ GLpV q.

G GLpV q

G{N

π

ρ

ö
D! rρ

By Lemma 14.5 we have kerpψq “ kerpρq • N . Therefore, by the
universal property of the quotient, ρ induces a unique C-representation
rρ : G{N ›Ñ GLpV q with the property that rρ ˝ π “ ρ.

Letting χ be the character afforded by rρ, it follows that ρ “ InfGG{Nprρq and ψ “ InfGG{Npχq. Thus
the 1st map is surjective. Its injectivity is clear (e.g. by Remark 14.2).

The second map is well-defined by the above and Exercise 14.3(a). It is injective because it is just the
restriction of the 1st map to the IrrpG{Nq, whereas it is surjective by the same argument as above as the
constructed representation rρ is clearly irreducible if ρ is, as rρ ˝ π “ ρ.

Exercise 14.7

Let G be a finite group. Prove that if N E G, then

N “

£

χPIrrpGq
NÑkerpχq

kerpχq �
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It follows immediately from the above exercise that the lattice of normal subgroups of G can be read
off from its character table. The theorem also implies that it can be read off from the character table,
whether the group is abelian or simple.

Corollary 14.8

(a) Inflation from the abelianization induces a bijection

InfGG{G1 : IrrpG{G1
q LinpGq

„ �

In particular, G has precisely |G : G1
| linear characters.

(b) The group G is abelian if and only if all its irreducible characters are linear.

Proof : (a) First, we claim that if ψ P pGq, then G1 is in its kernel. Indeed, if ψp1q “ 1, then ψ : G ›Ñ Cˆ

is a group homomorphism. Therefore, as Cˆ is abelian,

ψpr�� �sq “ ψp���´1�´1
q “ ψp�qψp�qψp�q

´1ψp�q
´1

“ ψp�qψp�q
´1ψp�qψp�q

´1
“ 1

for all �� � P G, and hence G1
“ xr�� �s | �� � P Gy § kerpχq. In addition, any irreducible character

of G{G1 is linear by Proposition 6.1 because G{G1 is abelian. Thus Theorem 14.6 yields a bijection

IrrpG{G1
q “ LinpG{G1

q tψ P IrrpGq | G1
§ kerpψqu “ LinpGq�„

InfGG{G1

as required.
(b) The group G is abelian if and only if G{G1

“ G, which happens if and only if InfGG{G1 “ Id. Hence,
the claim follows from (a).

Corollary 14.9

A finite group G is simple ñ χp�q ‰ χp1q @ � P Gzt1u and @ χ P IrrpGqzt1Gu.

Proof : [Exercise]

Exercise 14.10

Compute the complex character table of the alternating group A4 through the following steps:

1. Determine the conjugacy classes of A4 (there are 4 of them) and the corresponding centraliser
orders.

2. Determine the degrees of the 4 irreducible characters of A4.

3. Determine the linear characters of A4.

4. Determine the non-linear character of A4 using the 2nd Orthogonality Relations.

To finish this section we show how to compute the character table of the symmetric group S4 combining
several of the techniques we have developed in this chapter.
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Example 7 (The character table of S4)

Again the conjugacy classes of S4 are given by the cycle types. We fix

C1 “ tIdu� C2 “ rp1 2qs� C3 “ rp1 2 3qs� C4 “ rp1 2qp3 4qs� C5 “ rp1234qs

ñ � “ 5� |C1| “ 1� |C2| “ 6� |C3| “ 8� |C4| “ 3� |C5| “ 6 �

Hence | IrrpGq| “ |CpGq| “ 5 and as always we may assume that χ1 “ 1G is the trivial character.

Recall that V4 “ tId� p1 2qp3 4q� p1 3qp2 4q� p1 4qp2 3qu E S4 with S4{V4 – S3 (AGS or Einführung
in die Algebra!). Therefore, by Theorem 14.6 we can "inflate" the character table of S4{V4 – S3 to
S4 (see Example 5 for the character table of S3). This provides us with three irreducible characters
χ1, χ2 and χ3 of S4:

Id p1 2q p1 2 3q p1 2qp3 4q p1 2 3 4q

|CGp��q| 24 4 3 8 4
χ1 1 1 1 1 1
χ2 1 -1 1 1 -1
χ3 2 0 -1 2 0
χ4 . . . . .
χ5 . . . . .

Here we have computed the values of χ2 and χ3 using Remark 14.2 as follows:

¨ Inflation preserves degrees, hence it follows from Example 5 that χ2pIdq “ 1 and χ3pIdq “ 2.
(Up to relabelling!)

¨ As C4 “ rp1 2qp3 4qs Ñ V4, p1 2qp3 4q P kerpχ�q for � “ 2� 3 and hence χ2pp1 2qp3 4qq “ 1 and
χ3pp1 2qp3 4qq “ 2.

¨ By Remark 14.2 the values of χ2 and χ3 at p1 2q and p1 2 3q are given by the corresponding
values in the character table of S3. (Here it is enough to argue that the isomorphism between
S4{V4 and S3 must preserve orders of elements, hence also the cycle type in this case.)

¨ Finally, we compute that p1 2 3 4q “ p1 2q P S4{V4, hence χ�pp1 2 3 4qq “ χ�pp1 2qq for
� “ 2� 3.

Therefore, it remains to compute χ4 and χ5. To begin with the degree formula yields

5ÿ

�“1
χ�pIdq

2
“ 24 ùñ χ4pIdq

2
` χ5pIdq

2
“ 18 ùñ χ4pIdq “ χ5pIdq “ 3 �

Next, the 2nd Orthogonality Relations applied to the 3rd column with itself read

5ÿ

�“1
χ�pp1 2 3qqχ�pp1 2 3qq “

5ÿ

�“1
χ�pp1 2 3qqχ�pp1 2 3q

´1
q “ |CGpp1 2 3qq| “ 3 �

hence 1 ` 1 ` 1 ` χ4pp1 2 3qq
2

` χ5p1 2 3qq
2

“ 3 and it follows that χ4pp1 2 3qq “ χ5pp1 2 3qq “ 0.
Similarly, the 2nd Orthogonality Relations applied to the 2nd column with itself / the 4th column
with itself and the 5th column with itself yield that all other entries squared are equal to 1, hence
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all other entries are ˘1.
The 2nd Orthogonality Relations applied to the 1st and 2nd columns give the 2nd column, i.e.
χ4pp1 2qq “ 1 and χ5pp1 2qq “ ´1 (up to swapping χ4 and χ5).
Then the 1st Orthogonality Relations applied to the 3rd and the 4th row yield

0 “

5ÿ

�“1

1
|CGp��q|

χ3p��qχ4p��q “
6
24 `

1
4χ4pp1 2qp3 4qq ñ χ4pp1 2qp3 4qq “ ´1 �

Similar with the 3rd row and the 5th row: χ5pp1 2qp3 4qq “ ´1. Finally the 1st Orthogonal-
ity Relations applied to the 1st and the 4th (resp. 5th) row yield χ4pp1 2 3 4qq “ ´1 (resp.
χ5pp1 2 3 4qq “ 1). Thus the character table of S4 is:

Id p1 2q p1 2 3q p1 2qp3 4q p1 2 3 4q

|CGp��q| 24 4 3 8 4
χ1 1 1 1 1 1
χ2 1 -1 1 1 -1
χ3 2 0 -1 2 0
χ4 3 1 0 -1 -1
χ5 3 -1 0 -1 1

Remark 14.11

Two non-isomorphic groups can have the same character table. E.g.: Q8 and D8, but Q8 fl D8.
Thus, the character table does not determine:

• the group up to isomorphism;

• the full lattice of subgroups;

• the orders of elements.

Exercise 14.12

Compute the character tables of D8 and Q8.
[Hint: In each case, determine the commutator subgroup and deduce that there are 4 linear characters.]

Exercise 14.13 (The determinant of a representation)

If ρ : G ›Ñ GLpV q is a C-representation of G and det : GLpV q ›Ñ C˚ denotes the determinant
homomorphism, then we define a linear character of G via

detρ :“ det ˝ρ : G ›Ñ C˚ �

called the determinant of ρ. Prove that, although the finite groups D8 and Q8 have the same
character table, they can be distinguished by considering the determinants of their irreducible
C-representations.
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Exercise 14.14

Prove the follwing assertions:

(a) If G is a non-abelian simple group (or more generally if G is perfect, i.e. G “ rG� Gs), then
the image ρpGq of any C-representation ρ : G ›Ñ GLpV q is a subgroup of SLpV q.

(b) No simple group G has an irreducible character of degree 2.
Assume that G is simple and ρ : G ›Ñ GL2pCq is an irreducible matrix representation of G with character χ and
proceed as follows:

1. Prove that ρ is faithful and G is non-abelian.
3. Determine the determinant detρ of ρ.
4. Prove that |G| is even and G admits an element � of order 2.
5. Prove that x�y C G and conclude that assertion (b) holds.



Chapter 5. Integrality and Theorems of Burnside’s

The main aim of this chapter is to prove Burnside’s ���� theorem, which provides us with a solubility
criterion for finite groups of order ���� with �� � prime numbers, which is extremely hard to prove
by purely group theoretic methods. To reach this aim, we need to develop techniques involving the
integrality of character values and further results of Burnside’s on the vanishing of character values.

Notation: throughout this chapter, unless otherwise specified, we let:

¨ G denote a finite group;

¨ K :“ C be the field of complex numbers;

¨ IrrpGq :“ tχ1� � � � � χ�u denote the set of pairwise distinct irreducible characters of G;

¨ C1 “ r�1s� � � � � C� “ r��s denote the conjugacy classes of G, where �1� � � � � �� is a fixed set of
representatives; and

¨ we use the convention that χ1 “ 1G and �1 “ 1 P G.

In general, unless otherwise stated, all groups considered are assumed to be finite and all C-vector
spaces / modules over the group algebra considered are assumed to be finite-dimensional.

15 Algebraic Integers and Character Values

First we investigate the algebraic nature of character values.

Recall: (See Appendix D for details.)
An element � P C which is integral over Z is called an algebraic integer. In other words, � P C is an
algebraic integer if � is a root of monic polynomial � P ZrX s.
Algebraic integers have the following properties:

¨ The integers are clearly algebraic integers.

¨ Roots of unity are algebraic integers, as they are roots of polynomials of the form X�
´ 1 P ZrX s.

¨ The algebraic integers form a subring of C. In particular, sums and products of algebraic integers
are again algebraic integers.

¨ If � P Q is an algebraic integer, then � P Z. In other words t� P Q | � algebraic integeru “ Z.

44
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Corollary 15.1

Character values are algebraic integers.

Proof : By the above, roots of unity are algebraic integers. Since the algebraic integers form a ring, so are
sums of roots of unity. Hence the claim follows from Property 7.5(b).

16 Central Characters

We now extend representations/characters of finite groups to "representations/characters" of the centre
of the group algebra CG in order to obtain further results on character values, which we will use in the
next sections in order to prove Burnside’s ���� theorem.

Definition 16.1 (Class sums)

The elements pC� :“
∞

�PC�
� P CG (1 § � § �) are called the class sums of G.

Lemma 16.2

The class sums tpC� | 1 § � § �u form a C-basis of Z pCGq. In other words, Z pCGq “
À�

�“1 CpC� .

Proof : Notice that the class sums are clearly C-linearly independent because the group elements are.

’Ö’: @ 1 § � § � and @ � P G, we have

� ¨ pC� “ �p�´1 pC��q “ pC� ¨ � �

Extending by C-linearity, we get �¨pC� “ pC� ¨� @ 1 § � § � and @ � P CG. Thus
À�

�“1 CpC� Ñ Z pCGq.
’Ñ’: Let � P Z pCGq and write � “

∞
�PG λ�� with tλ�u�PG P C. Since � is central, for every � P G, we

have ÿ

�PG
λ�� “ � “ ���´1

“

ÿ

�PG
λ�p���´1

q �

Comparing coefficients yield λ� “ λ���´1 @ �� � P G. Namely, the coefficients λ� are constant on
the conjugacy classes of G, and hence

� “

�ÿ

�“1
λ��

pC� P

�à

�“1
CpC� �

Now, notice that by definition the class sums pC� (1 § � § �) are elements of the subring ZG of CG,
hence of the centre of ZG.

Corollary 16.3

(a) Z pZGq is finitely generated as a Z-module.

(b) The centre Z pZGq of the group ring ZG is integral over Z; in particular the class sums pC�
(1 § � § �) are integral over Z.


