Modules over Rings and Algebras: Basics

These notes provides you with a short recap of the notions of the theory of modules, which I will assume as known throughout this mini-course. The text is thought, so that you can refer to it if you have doubts about some elementary definitions and results, but proofs are omitted. For details I recommend Rotman's book below.

References:

[Rot10] J. J. Rotman. Advanced modern algebra. 2nd ed. Providence, RI: American Mathematical Society (AMS), 2010.

Notation: throughout these notes *R* and *S* denote rings. Unless otherwise specified, all rings are assumed to be *unital* and *associative*.

A Modules, submodules, morphisms

Definition A.1 (Left R-module, right R-module, (R, S)-bimodule)

(a) A **left** *R***-module** is an ordered triple $(M, +, \cdot)$, where (M, +) is an abelian group and $\cdot : R \times M \longrightarrow M, (r, m) \mapsto r \cdot m$ is a binary operation such that the map

$$\begin{array}{rccc} \lambda : & R & \longrightarrow & \mathsf{End}(M) \\ & r & \mapsto & \lambda(r) := \lambda_r : M \longrightarrow M, \, m \mapsto r \cdot m \end{array}$$

is a ring homomorphism. The operation \cdot is called a **scalar multiplication** or an **external composition law**.

- (b) A **right** *R***-module** is defined analogously using a scalar multiplication $\cdot : M \times R \longrightarrow M$, $(m, r) \mapsto m \cdot r$ on the right-hand side.
- (c) An (R, S)-bimodule is an abelian group (M, +) which is both a left *R*-module and a right *S*-module, and which satisfies the axiom

$$r \cdot (m \cdot s) = (r \cdot m) \cdot s \qquad \forall r \in R, \forall s \in S, \forall m \in M.$$

Convention: Unless otherwise stated, in this lecture we always work with left modules. When no confusion is to be made, we will simply write "R-module" to mean "left R-module", denote R-modules by their underlying sets and write rm instead of $r \cdot m$.

Definitions/properties for/of right modules and bimodules are similar to those for left modules, hence in the sequel we omit them.

Definition A.2 (*R-submodule*)

An *R*-submodule of an *R*-module *M* is a subgroup $U \leq M$ such that $r \cdot u \in U \forall r \in R, \forall u \in U$.

Definition A.3 (Morphisms)

A (homo)morphism of *R*-modules (or an *R*-linear map, or an *R*-homomorphism) is a map of *R*-modules $\varphi : M \longrightarrow N$ such that:

(i) φ is a group homomorphism; and

(ii)
$$\varphi(r \cdot m) = r \cdot \varphi(m) \ \forall \ r \in R, \ \forall \ m \in M.$$

Furthermore:

- An injective (resp. surjective) morphism of *R*-modules is sometimes called a monomorphism (resp. an epimorphism) and we often denote it with a *hook arrow* "→" (resp. a *two-head arrow* "→").
- · A bijective morphism of *R*-modules is called an **isomorphism** (or an *R*-**isomorphism**), and we write $M \cong N$ if there exists an *R*-isomorphism between *M* and *N*.
- A morphism from an *R*-module to itself is called an **endomorphism** and a bijective endomorphism is called an **automorphism**.

Notation A.4

We let $_R$ **Mod** denote the category of left R-modules (with R-linear maps as morphisms), we let **Mod**_R denote the category of right R-modules (with R-linear maps as morphisms), and we let $_R$ **Mod**_S denote the category of (R, S)-bimodules (with (R, S)-linear maps as morphisms).

Remark A.5

- (a) It is easy to check that Definition A.1(a) is equivalent to requiring that $(M, +, \cdot)$ satisfies the following axioms:
 - (M1) (M, +) is an abelian group;
 - (M2) $(r_1 + r_2) \cdot m = r_1 \cdot m + r_2 \cdot m$ for each $r_1, r_2 \in R$ and each $m \in M$;
 - (M3) $r \cdot (m_1 + m_2) = r \cdot m_1 + r \cdot m_2$ for each $r \in R$ and all $m_1, m_2 \in M$;
 - (M4) $(rs) \cdot m = r \cdot (s \cdot m)$ for each $r, s \in R$ and all $m \in M$.
 - (M5) $1_R \cdot m = m$ for each $m \in M$.

In other words, modules over rings satisfy the same axioms as vector spaces over fields. Hence: Vector spaces over a field K are K-modules, and conversely.

- (b) Abelian groups are \mathbb{Z} -modules, and conversely.
- (c) If the ring R is commutative, then any right module can be made into a left module, and conversely.
- (d) Change of the base ring. If $\varphi : S \longrightarrow R$ is a ring homomorphism, then every *R*-module *M* can be endowed with the structure of an *S*-module with external composition law given by

 $\cdot : S \times M \longrightarrow M, (s, m) \mapsto s \cdot m := \varphi(s) \cdot m.$

(e) If $\varphi : M \longrightarrow N$ is a morphism of *R*-modules, then the kernel ker $(\varphi) := \{m \in M \mid \varphi(m) = 0_N\}$ of φ is an *R*-submodule of *M* and the image Im $(\varphi) := \varphi(M) = \{\varphi(m) \mid m \in M\}$ of φ is an *R*-submodule of *N*.

If M = N and φ is invertible, then the inverse is the usual set-theoretic *inverse map* φ^{-1} and is also an *R*-homomorphism.

Notation A.6

Given *R*-modules *M* and *N*, we set $\text{Hom}_R(M, N) := \{\varphi : M \longrightarrow N \mid \varphi \text{ is an } R\text{-homomorphism}\}$. This is an abelian group for the pointwise addition of maps:

$$\begin{array}{cccc} +: & \operatorname{Hom}_{R}(M, N) \times \operatorname{Hom}_{R}(M, N) & \longrightarrow & \operatorname{Hom}_{R}(M, N) \\ & (\varphi, \psi) & \mapsto & \varphi + \psi : M \longrightarrow N, m \mapsto \varphi(m) + \psi(m) \,. \end{array}$$

In case N = M, we write $\operatorname{End}_R(M) := \operatorname{Hom}_R(M, M)$ for the set of endomorphisms of M and $\operatorname{Aut}_R(M)$ for the set of automorphisms of M, i.e. the set of invertible endomorphisms of M.

Lemma-Definition A.7 (Quotients of modules)

Let U be an R-submodule of an R-module M. The quotient group M/U can be endowed with the structure of an R-module in a natural way via the external composition law

$$R \times M/U \longrightarrow M/U$$

(r, m + U) \longmapsto r · m + U

The canonical map $\pi : M \longrightarrow M/U, m \mapsto m + U$ is *R*-linear and we call it the **canonical** (or **natural**) (ho)momorphism or the quotient (ho)momorphism.

Definition A.8 (Cokernel, coimage)

Let $\varphi \in \text{Hom}_R(M, N)$. The **cokernel** of φ is the quotient *R*-module $\text{coker}(\varphi) := N/ \text{Im} \varphi$, and the **coimage** of φ is the quotient *R*-module $M/ \ker \varphi$.

Theorem A.9 (The universal property of the quotient and the isomorphism theorems)

(a) Universal property of the quotient: Let $\varphi : M \longrightarrow N$ be a homomorphism of *R*-modules. If *U* is an *R*-submodule of *M* such that $U \subseteq \ker(\varphi)$, then there exists a unique *R*-module homomorphism $\overline{\varphi} : M/U \longrightarrow N$ such that $\overline{\varphi} \circ \pi = \varphi$, or in other words such that the following diagram commutes:

$$\begin{array}{c} M \xrightarrow{\varphi} N \\ \pi \downarrow & \overset{()}{\underset{\exists : \overline{\varphi}}{\longrightarrow}} N \\ M/U \end{array}$$

Concretely, $\overline{\varphi}(m + U) = \varphi(m) \forall m + U \in M/U$.

(b) **1st isomorphism theorem**: With the notation of (a), if $U = \text{ker}(\varphi)$, then

$$\overline{\varphi}: M/\ker(\varphi) \longrightarrow \operatorname{Im}(\varphi)$$

is an isomorphism of *R*-modules.

(c) **2nd isomorphism theorem**: If U_1 , U_2 are *R*-submodules of *M*, then so are $U_1 \cap U_2$ and $U_1 + U_2$, and there is an isomorphism of *R*-modules

$$(U_1 + U_2)/U_2 \cong U_1/(U_1 \cap U_2)$$
.

(d) **3rd isomorphism theorem**: If $U_1 \subseteq U_2$ are *R*-submodules of *M*, then there is an isomorphism of *R*-modules

$$(M/U_1)/(U_2/U_1) \cong M/U_2$$
.

(e) Correspondence theorem: If U is an R-submodule of M, then there is a bijection

$$\begin{array}{cccc} \{R\text{-submodules } X \text{ of } M \mid U \subseteq X\} & \longleftrightarrow & \{R\text{-submodules of } M/U\} \\ & X & \mapsto & X/U \\ & \pi^{-1}(Z) & \longleftrightarrow & Z \,. \end{array}$$

B Free modules and projective modules

Free modules

Definition B.1 (Generating set / R-basis / finitely generated/free R-module)

Let *M* be an *R*-module and let $X \subseteq M$ be a subset. Then:

(a) *M* is said to be **generated by** *X* if every element $m \in M$ may be written as an *R*-linear combination $m = \sum_{x \in X} \lambda_x x$, i.e. where $\lambda_x \in R$ is almost everywhere 0. In this case we write $M = \langle X \rangle_R$ or $M = \sum_{x \in X} Rx$.

- (b) *M* is said to be **finitely generated** if it admits a finite set of generators.
- (c) X is an *R*-basis (or simply a basis) if X generates M and if every element of M can be written in a unique way as an *R*-linear combination $\sum_{x \in X} \lambda_x X$ (i.e. with $\lambda_x \in R$ almost everywhere 0).
- (d) *M* is called **free** if it admits an *R*-basis *X*, and |X| is called the *R*-rank of *M*. Notation: In this case we write $M = \bigoplus_{x \in X} Rx \cong \bigoplus_{x \in X} R$.

Remark B.2

- (a) **Warning**: If the ring *R* is not commutative, then it is not true in general that two different bases of a free *R*-module have the same number of elements.
- (b) Let X be a generating set for M. Then, X is a basis of M if and only if S is R-linearly independent.
- (c) If *R* is a field, then every *R*-module is free. (*R*-modules are *R*-vector spaces in this case!)

Proposition B.3 (Universal property of free modules)

Let M be a free R-module with R-basis X. If N is an R-module and $f : X \longrightarrow N$ is a map (of sets), then there exists a unique R-homomorphism $\hat{f} : M \longrightarrow N$ such that the following diagram commutes:

$$\begin{array}{c} X \xrightarrow{f} & \Lambda \\ \underset{inc}{\overset{\bigcirc}{\longrightarrow}} & \overset{\bigcirc}{\exists ! \hat{f}} \\ M \end{array}$$

We say that \hat{f} is obtained by **extending** f by *R*-linearity.

Proof: Given an *R*-linear combination $\sum_{x \in X} \lambda_x x \in M$, set $\hat{f}(\sum_{x \in X} \lambda_x x) := \sum_{x \in X} \lambda_x f(x)$.

Proposition B.4 (Properties of free modules)

- (a) Every *R*-module *M* is isomorphic to a quotient of a free *R*-module.
- (b) If *P* is a free *R*-module, then $\text{Hom}_R(P, -)$ is an exact functor.

Projective modules

Proposition-Definition B.5 (Projective module)

Let *P* be an *R*-module. Then the following are equivalent:

- (a) The functor $\operatorname{Hom}_{R}(P, -)$ is exact.
- (b) If $\psi \in \text{Hom}_R(M, N)$ is a surjective morphism of *R*-modules, then the morphism of abelian groups $\psi_* : \text{Hom}_R(P, M) \longrightarrow \text{Hom}_R(P, N)$ is surjective.

- (c) If $\pi \in \text{Hom}_R(M, P)$ is a surjective morphism of *R*-modules, then π splits, i.e., there exists $\sigma \in \text{Hom}_R(P, M)$ such that $\pi \circ \sigma = \text{Id}_P$.
- (d) *P* is isomorphic to a direct summand of a free *R*-module.
- If P satisfies these equivalent conditions, then P is called **projective**.

Example B.6

- (a) If $R = \mathbb{Z}$, then every submodule of a free \mathbb{Z} -module is again free (main theorem on \mathbb{Z} -modules).
- (b) Let *e* be an idempotent in *R*, that is $e^2 = e$. Then, $R \cong Re \oplus R(1 e)$ and *Re* is projective but not free if $e \neq 0, 1$.
- (d) A direct sum of modules $\bigoplus_{i \in I} P_i$ is projective if and only if each P_i is projective.

C Direct products and direct sums

Let $\{M_i\}_{i \in I}$ be a family of *R*-modules. Then the abelian group $\prod_{i \in I} M_i$, that is the product of $\{M_i\}_{i \in I}$ seen as a family of abelian groups, becomes an *R*-module via the following external composition law:

$$R \times \prod_{i \in I} M_i \longrightarrow \prod_{i \in I} M_i$$
$$(r, (m_i)_{i \in I}) \longmapsto (r \cdot m_i)_{i \in I}$$

Furthermore, for each $j \in I$, we let $\pi_j : \prod_{i \in I} M_i \longrightarrow M_j$, $(m_i)_{i \in I} \mapsto m_j$ denotes the *j*-th projection from the product to the module M_j .

Proposition C.1 (Universal property of the direct product)

If $\{\varphi_i : L \longrightarrow M_i\}_{i \in I}$ is a family of *R*-homomorphisms, then there exists a unique *R*-homomorphism $\varphi : L \longrightarrow \prod_{i \in I} M_i$ such that $\pi_j \circ \varphi = \varphi_j$ for every $j \in I$.

is an isomorphism of abelian groups.

Now let $\bigoplus_{i \in I} M_i$ be the subgroup of $\prod_{i \in I} M_i$ consisting of the elements $(m_i)_{i \in I}$ such that $m_i = 0$ almost everywhere (i.e. $m_i = 0$ exept for a finite subset of indices $i \in I$). This subgroup is called the **direct sum** of the family $\{M_i\}_{i \in I}$ and is in fact an *R*-submodule of the product. For each $j \in I$, we let $\eta_j : M_j \longrightarrow \bigoplus_{i \in I} M_i, m_j \mapsto$ denote the canonical injection of M_j in the direct sum.

Proposition C.2 (Universal property of the direct sum)

If $\{f_i : M_i \longrightarrow L\}_{i \in I}$ is a family of *R*-homomorphisms, then there exists a unique *R*-homomorphism $\varphi : \bigoplus_{i \in I} M_i \longrightarrow L$ such that $f \circ \eta_j = f_j$ for every $j \in I$.

Thus,

$$\operatorname{Hom}_{R}\left(\bigoplus_{i\in I}M_{i},L\right)\longrightarrow\prod_{i\in I}\operatorname{Hom}_{R}(M_{i},L)$$
$$f\longmapsto\left(f\circ\eta_{i}\right)_{i\in I}$$

is an isomorphism of abelian groups.

Remark C.3

It is clear that if $|I| < \infty$, then $\bigoplus_{i \in I} M_i = \prod_{i \in I} M_i$.

The direct sum as defined above is often called an *external* direct sum. This relates as follows with the usual notion of *internal* direct sum:

Remark C.4 ("Internal" direct sums)

Let M be an R-module and N_1 , N_2 be two R-submodules of M. We write $M = N_1 \oplus N_2$ if every $m \in M$ can be written in a unique way as $m = n_1 + n_2$, where $n_1 \in N_1$ and $n_2 \in N_2$, or equivalently if $M = N_1 + N_2$ and $N_1 \cap N_2 = \{0\}$. In this case,

$$\varphi: \qquad M \qquad \longrightarrow \qquad N_1 \times N_2 = N_1 \oplus N_2 \quad \text{(external direct sum)} \\ m = n_1 + n_2 \quad \mapsto \qquad (n_1, n_2),$$

is an isomorphism of *R*-modules.

This obviously generalises to arbitrary internal finite direct sums $M = \bigoplus_{i \in I} N_i$.

D Exact sequences

Exact sequences constitute a very useful tool for the study of modules. Often we obtain valuable information about modules by *plugging them* in short exact sequences, where the other terms are known.

Definition D.1 (*Exact sequence*)

A sequence $L \xrightarrow{\varphi} M \xrightarrow{\psi} N$ of *R*-modules and *R*-linear maps is called **exact** (at *M*) if $\operatorname{Im} \varphi = \ker \psi$.

Remark D.2 (Injectivity/surjectivity/short exact sequences)

- (a) $L \xrightarrow{\varphi} M$ is injective $\iff 0 \longrightarrow L \xrightarrow{\varphi} M$ is exact at *L*.
- (b) $M \xrightarrow{\psi} N$ is surjective $\iff M \xrightarrow{\psi} N \longrightarrow 0$ is exact at N.
- (c) $0 \longrightarrow L \xrightarrow{\varphi} M \xrightarrow{\psi} N \longrightarrow 0$ is exact (i.e. at *L*, *M* and *N*) if and only if φ is injective, ψ is surjective and ψ induces an *R*-isomorphism $\overline{\psi} : M/\operatorname{Im} \varphi \longrightarrow N, m + \operatorname{Im} \varphi \mapsto \psi(m)$. Such a sequence is called a **short exact sequence** (s.e.s. for short).
- (d) If $\varphi \in \text{Hom}_R(L, M)$ is an injective morphism, then there is a s.e.s.

$$0 \longrightarrow L \xrightarrow{\varphi} M \xrightarrow{\pi} \operatorname{coker}(\varphi) \longrightarrow 0$$

where π is the canonical projection.

(e) If $\psi \in \text{Hom}_R(M, N)$ is a surjective morphism, then there is a s.e.s.

$$0 \longrightarrow \ker(\psi) \xrightarrow{i} M \xrightarrow{\psi} N \longrightarrow 0$$
,

where i is the canonical injection.

Proposition D.3

Let Q be an R-module. Then the following holds:

(a) $\operatorname{Hom}_R(Q, -) : {}_R\operatorname{Mod} \longrightarrow \operatorname{Ab}$ is a *left* exact covariant functor. In other words, if $0 \longrightarrow L \xrightarrow{\varphi} M \xrightarrow{\psi} N \longrightarrow 0$ is a s.e.s of *R*-modules, then the induced sequence

$$0 \longrightarrow \operatorname{Hom}_{R}(Q, L) \xrightarrow{\varphi_{*}} \operatorname{Hom}_{R}(Q, M) \xrightarrow{\psi_{*}} \operatorname{Hom}_{R}(Q, N)$$

is an exact sequence of abelian groups. Here $\varphi_* := \operatorname{Hom}_R(Q, \varphi)$, that is $\varphi_*(\alpha) = \varphi \circ \alpha$ for every $\alpha \in \operatorname{Hom}_R(Q, L)$ and similarly for ψ_* .

(b) $\operatorname{Hom}_R(-, Q) : {}_R\operatorname{Mod} \longrightarrow \operatorname{Ab}$ is a *left* exact contravariant functor. In other words, if $0 \longrightarrow L \xrightarrow{\varphi} M \xrightarrow{\psi} N \longrightarrow 0$ is a s.e.s of *R*-modules, then the induced sequence

$$0 \longrightarrow \operatorname{Hom}_{R}(N, Q) \xrightarrow{\psi^{*}} \operatorname{Hom}_{R}(M, Q) \xrightarrow{\varphi^{*}} \operatorname{Hom}_{R}(L, Q)$$

is an exact sequence of abelian groups. Here $\varphi^* := \operatorname{Hom}_R(\varphi, Q)$, that is $\varphi^*(\alpha) = \alpha \circ \varphi$ for every $\alpha \in \operatorname{Hom}_R(M, Q)$ and similarly for ψ^* .

Remark D.4

Notice that $Hom_R(Q, -)$ and $Hom_R(-, Q)$ are not right exact in general.

Lemma-Definition D.5 (Split short exact sequence)

A s.e.s. $0 \longrightarrow L \xrightarrow{\varphi} M \xrightarrow{\psi} N \longrightarrow 0$ of *R*-modules is called **split** if it satisfies one of the following equivalent conditions:

- (a) ψ admits an *R*-linear section, i.e. if $\exists \sigma \in \text{Hom}_R(N, M)$ such that $\psi \circ \sigma = \text{Id}_N$;
- (b) φ admits an *R*-linear retraction, i.e. if $\exists \rho \in \text{Hom}_R(M, L)$ such that $\rho \circ \varphi = \text{Id}_L$;
- (c) \exists an *R*-isomorphism $\alpha : M \longrightarrow L \oplus N$ such that the following diagram commutes:

where *i*, resp. *p*, are the canonical inclusion, resp. projection.

Remark D.6

If the sequence splits and σ is a section, then $M = \varphi(L) \oplus \sigma(N)$. If the sequence splits and ρ is a retraction, then $M = \varphi(L) \oplus \ker(\rho)$.

Example D.7

The s.e.s. of $\mathbb{Z}\text{-modules}$

$$0 \longrightarrow \mathbb{Z}/2\mathbb{Z} \xrightarrow{\phi} \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \xrightarrow{\pi} \mathbb{Z}/2\mathbb{Z} \longrightarrow 0$$

defined by $\varphi([1]) = ([1], [0])$ and where π is the canonical projection onto the cokernel of φ is split but the sequence

$$0 \longrightarrow \mathbb{Z}/2\mathbb{Z} \xrightarrow{\varphi} \mathbb{Z}/4\mathbb{Z} \xrightarrow{\pi} \mathbb{Z}/2\mathbb{Z} \longrightarrow 0$$

defined by $\varphi([1]) = ([2])$ and π is the canonical projection onto the cokernel of φ is not split.

E Tensor products

Definition E.1 (Tensor product of R-modules)

Let *M* be a right *R*-module and let *N* be a left *R*-module. Let *F* be the free \mathbb{Z} -module with basis $M \times N$. Let *G* be the subgroup of *F* generated by all the elements

$$(m_1 + m_2, n) - (m_1, n) - (m_2, n), \quad \forall m_1, m_2 \in M, \forall n \in N,$$

 $(m, n_1 + n_2) - (m, n_1) - (m, n_2), \quad \forall m \in M, \forall n_1, n_2 \in N, \text{ and}$
 $(mr, n) - (m, rn), \quad \forall m \in M, \forall n \in N, \forall r \in R.$

The **tensor product of** M and N (balanced over R), is the abelian group $M \otimes_R N := F/G$. The class of $(m, n) \in F$ in $M \otimes_R N$ is denoted by $m \otimes n$.

Remark E.2

(a) $M \otimes_R N = \langle m \otimes n \mid m \in M, n \in N \rangle_{\mathbb{Z}}$.

(b) In $M \otimes_R N$, we have the relations

 $(m_1 + m_2) \otimes n = m_1 \otimes n + m_2 \otimes n, \quad \forall m_1, m_2 \in M, \forall n \in N,$ $m \otimes (n_1 + n_2) = m \otimes n_1 + m \otimes n_2, \quad \forall m \in M, \forall n_1, n_2 \in N, \text{ and}$ $mr \otimes n = m \otimes rn, \quad \forall m \in M, \forall n \in N, \forall r \in R.$

In particular, $m \otimes 0 = 0 = 0 \otimes n \forall m \in M$, $\forall n \in N$ and $(-m) \otimes n = -(m \otimes n) = m \otimes (-n) \forall m \in M$, $\forall n \in N$.

Definition E.3 (*R*-balanced map)

Let M and N be as above and let A be an abelian group. A map $f : M \times N \longrightarrow A$ is called R-balanced if

$$f(m_1 + m_2, n) = f(m_1, n) + f(m_2, n), \quad \forall m_1, m_2 \in M, \forall n \in N, f(m, n_1 + n_2) = f(m, n_1) + f(m, n_2), \quad \forall m \in M, \forall n_1, n_2 \in N, f(mr, n) = f(m, rn), \quad \forall m \in M, \forall n \in N, \forall r \in R.$$

Remark E.4

The canonical map $t: M \times N \longrightarrow M \otimes_R N$, $(m, n) \mapsto m \otimes n$ is *R*-balanced.

Proposition E.5 (Universal property of the tensor product)

Let *M* be a right *R*-module and let *N* be a left *R*-module. For every abelian group *A* and every *R*-balanced map $f: M \times N \longrightarrow A$ there exists a unique \mathbb{Z} -linear map $\overline{f}: M \otimes_R N \longrightarrow A$ such that the following diagram commutes:

$$\begin{array}{c|c}
M \times N & \xrightarrow{} \\
 t \\
 & \downarrow \\
 & \swarrow & \overbrace{\overline{f}} \\
M \otimes_R N
\end{array}$$

Proof: Let $\iota : M \times N \longrightarrow F$ denote the canonical inclusion, and let $\pi : F \longrightarrow F/G$ denote the canonical projection. By the universal property of the free \mathbb{Z} -module, there exists a unique \mathbb{Z} -linear map $\tilde{f} : F \longrightarrow A$ such that $\tilde{f} \circ \iota = f$. Since f is R-balanced, we have that $G \subseteq \ker(\tilde{f})$. Therefore, the universal property of the quotient yields the existence of a unique homomorphism of abelian groups $\bar{f} : F/G \longrightarrow A$ such that $\bar{f} \circ \pi = \tilde{f}$:

Clearly $t = \pi \circ \iota$, and hence $\overline{f} \circ t = \overline{f} \circ \pi \circ \iota = \widetilde{f} \circ \iota = f$.

Remark E.6

Let M and N be as in Definition E.1.

(a) Let $\{M_i\}_{i \in I}$ be a collection of right *R*-modules, *M* be a right *R*-module, *N* be a left *R*-module and $\{N_i\}_{i \in I}$ be a collection of left *R*-modules. Then, we have

$$\bigoplus_{i \in I} M_i \otimes_R N \cong \bigoplus_{i \in I} (M_i \otimes_R N)$$
$$M \otimes_R \bigoplus_{j \in J} N_j \cong \bigoplus_{j \in J} (M \otimes_R N_j).$$

(This is easily proved using both the universal property of the direct sum and of the tensor product.)

- (b) There are natural isomorphisms of abelian groups given by $R \otimes_R N \cong N$ via $r \otimes n \mapsto rn$, and $M \otimes_R R \cong M$ via $m \otimes r \mapsto mr$.
- (c) It follows from (b), that if *P* is a free left *R*-module with *R*-basis *X*, then $N \otimes_R P \cong \bigoplus_{x \in X} N$, and if *P* is a free right *R*-module with *R*-basis *X*, then $P \otimes_R M \cong \bigoplus_{x \in X} M$.
- (d) Let Q be a third ring. Then we obtain module structures on the tensor product as follows:
 - (i) If M is a (Q, R)-bimodule and N a left R-module, then $M \otimes_R N$ can be endowed with the structure of a left Q-module via

$$q \cdot (m \otimes n) = q \cdot m \otimes n \quad \forall q \in Q, \forall m \in M, \forall n \in N.$$

(ii) If *M* is a right *R*-module and *N* an (R, S)-bimodule, then $M \otimes_R N$ can be endowed with the structure of a right *S*-module via

$$(m \otimes n) \cdot s = qm \otimes n \cdot s \quad \forall s \in S, \forall m \in M, \forall n \in N.$$

- (iii) If M is a (Q, R)-bimodule and N an (R, S)-bimodule. Then $M \otimes_R N$ can be endowed with the structure of a (Q, S)-bimodule via the external composition laws defined in (i) and (ii).
- (e) Assume *R* is commutative. Then any *R*-module can be viewed as an (R, R)-bimodule. Then, in particular, $M \otimes_R N$ becomes an *R*-module (both on the left and on the right).
- (f) For instance, it follows from (e) that if K is a field and M and N are K-vector spaces with K-bases $\{x_i\}_{i \in I}$ and $\{y_j\}_{j \in J}$ resp., then $M \otimes_K N$ is a K-vector space with a K-basis given by $\{x_i \otimes y_j\}_{(i,j) \in I \times J}$.
- (g) **Tensor product of morphisms:** Let $f : M \longrightarrow M'$ be a morphism of right *R*-modules and $g : N \longrightarrow N'$ be a morphism of left *R*-modules. Then, by the universal property of the tensor product, there exists a unique \mathbb{Z} -linear map $f \otimes g : M \otimes_R N \longrightarrow M' \otimes_R N'$ such that $(f \otimes g)(m \otimes n) = f(m) \otimes g(n)$.

Proposition E.7 (Right exactness of the tensor product)

- (a) Let N be a left R-module. Then $-\otimes_R N : \operatorname{Mod}_R \longrightarrow \operatorname{Ab}$ is a right exact covariant functor.
- (b) Let *M* be a right *R*-module. Then $M \otimes_R :_R \operatorname{Mod} \longrightarrow \operatorname{Ab}$ is a right exact covariant functor.

Remark E.8

The functors $-\otimes_R N$ and $M \otimes_R -$ are not left exact in general.

F Algebras

Definition F.1 (Algebra)

Let *R* be a commutative ring.

- (a) An *R*-algebra is an ordered quadruple $(A, +, \cdot, *)$ such that the following axioms hold:
 - (A1) $(A, +, \cdot)$ is a ring;
 - (A2) (A, +, *) is a left *R*-module; and
 - (A3) $r * (a \cdot b) = (r * a) \cdot b = a \cdot (r * b) \forall a, b \in A, \forall r \in R.$
- (b) A map $f : A \rightarrow B$ between two *R*-algebras is called an **algebra homomorphism** iff:
 - (i) *f* is a homomorphism of *R*-modules;
 - (ii) f is a ring homomorphism.

Example F.2 (Algebras)

- (a) The commutative ring R itself is an R-algebra.
 [The internal composition law "." and the external composition law "*" coincide in this case.]
- (b) For each n ∈ Z≥1 the set M_n(R) of n × n-matrices with coefficients in R is an R-algebra for its usual R-module and ring structures. [Note: in particular R-algebras need not be commutative rings in general!]
- (c) Let K be a field. Then for each $n \in \mathbb{Z}_{\geq 1}$ the polynom ring $K[X_1, \ldots, X_n]$ is a K-algebra for its usual K-vector space and ring structure.
- (d) ${\mathbb R}$ and ${\mathbb C}$ are ${\mathbb Q}\text{-algebras},\,{\mathbb C}$ is an ${\mathbb R}\text{-algebra},\,\ldots$
- (e) Rings are \mathbb{Z} -algebras.

Example F.3 (Modules over algebras)

(a) $A = M_n(R) \Rightarrow R^n$ is an A-module for the external composition law given by left matrix multiplication $A \times R^n \longrightarrow R^n$, $(B, x) \mapsto Bx$.

(b) If K is a field and V a K-vector space, then V becomes an A-algebra for $A := End_K(V)$ together with the external composition law

$$A imes V \longrightarrow V$$
 , $(\varphi, v) \mapsto \varphi(v)$.

(c) An arbitrary A-module M can be seen as an R-module via a change of the base ring since $R \longrightarrow A, r \mapsto r * 1_A$ is a homomorphism of rings by the algebra axioms.

Remark F.4

Let *R* be a commutative ring.

- (a) Let *M*, *N* be *R*-modules. Prove that:
 - (1) $\operatorname{End}_R(M)$, endowed with the pointwise addition of maps and the usual composition of maps, is a ring. (Note that the commutativity of R is not necessary!)
 - (2) The abelian group $\operatorname{Hom}_R(M, N)$ is a left *R*-module for the external composition law defined by

 $(rf)(m) := f(rm) = rf(m) \quad \forall r \in R, \forall f \in \operatorname{Hom}_{R}(M, N), \forall m \in M.$

It follows that $\operatorname{End}_R(M)$ is an *R*-algebra.

(b) Let now A be an R-algebra and M be an A-module. Then $\operatorname{End}_R(M)$ and $\operatorname{End}_A(M)$ are R-algebras.