Notation. Below R denotes an arbitrary unital and associative ring.

K (Ir)Reducibility and (in)decomposability

Submodules and direct sums of modules lead to two main notions that enable us to break modules in elementary pieces in order to simplify their study: simplicity and indecomposability.

Definition K. 1 (simple/irreducible module / indecomposable module / semisimple module)
(a) An R-module M is called reducible if it admits an R-submodule U such that $0 \subsetneq U \subsetneq M$. An R-module M is called simple, or irreducible, if it is non-zero and not reducible.
(b) An R-module M is called decomposable if M possesses two non-zero proper submodules M_{1}, M_{2} such that $M=M_{1} \oplus M_{2}$. An R-module M is called indecomposable if it is non-zero and not decomposable.
(c) An R-module M is called completely reducible or semisimple if it admits a direct sum decomposition into simple R-submodules.

When R is the group algebra of a finite group, we will investigate each of these three concepts in details in the lectures.

Remark K. 2

Clearly any simple module is also indecomposable, resp. semisimple. However, the converse does not hold in general.

Remark K. 3

If $(R,+, \cdot)$ is a ring, then $R^{\circ}:=R$ itself maybe seen as an R-module, called the regular module, where the external composition law is given by left multiplication, i.e.

$$
R \times R^{\circ} \longrightarrow R^{\circ},(r, m) \mapsto r \cdot m
$$

Ideals and submodules may be compared as follows:
(a) the R-submodules of R° are precisely the left ideals of R;
(b) $I \triangleleft R$ is a maximal left ideal of $R \Leftrightarrow R^{\circ} / I$ is a simple R-module, and $I \triangleleft R$ is a minimal left ideal of $R \Leftrightarrow I$ is simple when regarded as an R-submodule of R°.

L Semisimplicity of rings and modules

There are several equivalent characterisations of semisimplicity. We need the following ones.

Proposition L. 1

If M is an R-module, then the following assertions are equivalent:
(a) M is semisimple, i.e. $M=\oplus_{i \in I} S_{i}$ for some family $\left\{S_{i}\right\}_{i \in I}$ of simple R-submodules of M;
(b) $M=\sum_{i \in I} S_{i}$ for some family $\left\{S_{i}\right\}_{i \in I}$ of simple R-submodules of M;
(c) every R-submodule $M_{1} \subseteq M$ admits a complement in M, i.e. \exists an R-submodule $M_{2} \subseteq M$ such that $M=M_{1} \oplus M_{2}$.

Example 1
(a) The zero module is completely reducible, but neither reducible nor irreducible!
(b) If S_{1}, \ldots, S_{n} are simple R-modules, then their direct sum $S_{1} \oplus \ldots \oplus S_{n}$ is completely reducible by definition.
(c) The following exercise shows that there exists modules which are not completely reducible.

Exercise: Let K be a field and let A be the K-algebra $\left\{\left.\left(\begin{array}{cc}a_{1} & a \\ 0 & a_{1}\end{array}\right) \right\rvert\, a_{1}, a \in K\right\}$. Consider the A-module $V:=K^{2}$, where A acts by left matrix multiplication. Prove that:
(1) $\left\{\left.\binom{x}{0} \right\rvert\, x \in K\right\}$ is a simple A-submodule of V; but
(2) V is not semisimple.
(d) Any submodule and any quotient of a completely reducible module is again completely reducible.

Theorem-Definition L. 2 (Semisimple ring)
A ring R satisfying the following equivalent conditions is called semisimple.
(a) All short exact sequences of R-modules split.
(b) All R-modules are semisimple.
(c) All finitely generated R-modules are semisimple.
(d) The regular left R-module R° is semisimple, and is a direct sum of a finite number of minimal left ideals.

Example 2

Fields are semisimple. Indeed, if V is a finite-dimensional vector space over a field K of dimension n, then choosing a K-basis $\left\{e_{1}, \cdots, e_{n}\right\}$ of V yields $V=K e_{1} \oplus \ldots \oplus K e_{n}$, where $\operatorname{dim}_{K}\left(K e_{i}\right)=1$, hence $K e_{i}$ is a simple K-module for each $1 \leqslant i \leqslant n$.

Corollary L. 3

Let R be a semisimple ring. Then:
(a) R° has a composition series;
(b) R is both left Artinian and left Noetherian.

Next, we show that semisimplicity is detected by the Jacobson radical. This leads us to introduce a slightly weaker concept: the notion of J-semisimplicity.

Definition L. 4 (J-semimplicity)

A ring R is said to be J-semisimple if $J(R)=0$.

Remark L. 5

The ring of integers \mathbb{Z} is J-semisimple but not semisimple, because $J(\mathbb{Z})=0$, but not all \mathbb{Z}-modules are semisimple.

However:

Proposition L. 6

Any left Artinian ring R is J-semisimple if and only if it is semisimple.

Proposition L. 7

The quotient ring $R / J(R)$ is J-semisimple.
Proof: Since the rings R and $\bar{R}:=R / J(R)$ have the same simple modules (seen as abelian groups), Proposition-Definition H.1(a) yields:

$$
J(\bar{R})=\bigcap_{\substack{V \text { simple } \\ R \text {-module }}} \operatorname{ann}_{\bar{R}}(V)=\bigcap_{\substack{V \text { simple } \\ R \text {-module }}} \operatorname{ann}_{R}(V)+J(R)=J(R) / J(R)=0
$$

