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Abstract. We formulate conjectures concerning the dimension of the principal block
of a Z`-spets (as defined in our earlier paper), motivated by analogous statements for
finite groups. We show that these conjectures hold in certain situations. For this we
introduce and study a Yokonuma type algebra for torus normalisers in `-compact groups
which may be of independent interest.

1. Introduction

This paper is a contribution to the following broad question: Do there exist structures
associated to finite complex reflection groups that play the same role as finite reductive
groups play for finite Weyl groups? In [24, 6, 7], Broué, Michel and the second author
discovered that to certain complex reflection groups can be associated data sets, called
spetses, satisfying properties analogous to those of unipotent characters of finite reductive
groups. Their construction is based upon generalisations of Hecke algebras which in turn
arise from the braid groups associated to the space of regular orbits of complex reflection
groups. On the other hand, `-adic reflection groups for a prime number ` arise as the
“Weyl” groups of certain topological spaces called `-compact groups which possess much
of the structure of compact groups [15, 19]. Thus, spetses and `-compact groups widen
the context of group theory in two different directions — combinatorics/representation
theory and algebraic topology.

In [21] we introduced the notion of a Z`-spets, a new object to which both the spetsial
theory and `-compact group theory can be applied. It can be thought of as a finite
reductive group which possesses a representation theory in characteristic zero and at the
single prime `. It thus allows one to investigate aspects of the yet not well understood `-
modular representation theory of finite reductive groups in a more general setting. In [21]
we used this to exhibit a surprising consistency of spetses data with the famous Alperin
weight conjecture. Our results lead us to hope that putting the modular representation
theory of finite reductive groups in a broader context will pave the way to a better
understanding of some of the deep open problems of representation theory.

In this paper, we develop this theme further. In order to describe our results we recall
some features of [21]. Let ` be a prime number. Formally, a Z`-spets G = (Wϕ−1, L)
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is a spetsial `-adic reflection group W on a Z`-lattice L together with an element ϕ ∈
NGL(L)(W ). Via the theory of `-compact groups if q is a power of a prime different from `,
then under certain conditions, by [4] one can associate a fusion system F on a finite
`-group S to the pair G(q) := (G, q). In this situation, S should be considered as a
Sylow `-subgroup of G(q). It turns out that the `-compact theory provides us, for any
s ∈ S, with a centraliser which again is a Z`-spets. Using this we attached in [21] a
“principal `-block” B0 to G(q), with defect group S. It consists of a collection Irr(B0)
of sets (“irreducible characters”) in bijection with the unipotent characters attached to
the centralisers of elements s ∈ S (up to F -conjugation), defined in terms of a collection
of Hecke algebras. The construction of B0 is modelled on and generalises the case of
blocks of finite groups of Lie type in non-describing characteristic. When W is rational
and under some natural assumptions on `, we recover the `-fusion system F`(G(q)) and
principal `-block B0(G(q)) of the associated finite reductive group G(q). See Section 4 for
a description of B0 and comparison with the rational case.

A primary concern in [21] was the translation of certain local-global statements in
modular representation theory to purely local statements using the language of Z`-spetses.
Here, our considerations are more on the global side, so that actual degrees of characters
in Irr(B0) (as defined in [21, Def. 6.7]) play a more significant role. Firstly, we investigate
the dimension

dim(B0) :=
∑

γ∈Irr(B0)

γ(1)2 ∈ Z[x]

of B0. Motivated by results concerning the divisibility properties of this number for
principal blocks of finite groups, we make the following conjecture:

Conjecture 1. Let G = (Wϕ−1, L) be a simply connected Z`-spets for which ` is very
good, let q be a power of a prime different from `, and B0 be the principal `-block of G(q)
with defect group S. Then,

(1) (dim(B0)|x=q)` = |S|; and
(2) (dim(B0)|x=q)`′ ≡ |Wϕ−1ζ−1 |`′ (mod `), where ζ ∈ Z×` is the root of unity with q ≡

ζ (mod `), and Wϕ−1ζ−1 is the associated relative Weyl group (see [21, Thms 2.1
and 3.6] for the definition and role of the relative Weyl group).

For a finite group G with principal `-block B0 the equality (dim(B0))` = |S| is closely
related to the fact that |S| divides the dimension of each projective indecomposable mod-
ule Φν associated to ν ∈ IBr(B0). When B0 is as in Conjecture 1, and under the additional
hypotheses that W is an `′-group, ϕ is trivial and q ≡ 1 (mod `), in Section 4.2 we for-
mulate analogues of IBr(B0), decomposition numbers and deg Φν for which we make the
following additional conjecture:

Conjecture 2. In the setting of Conjecture 1 if W is an `′-group, ϕ is trivial and q ≡ 1
(mod `) we have

(3) |S| divides deg Φν |x=q for all ν ∈ IBr(B0).

Conjecture 1 combines the statements of Conjectures 4.2 and 4.3 and Conjecture 2 is
restated as Conjecture 4.5 in Section 4. In Proposition 4.6, we prove that Conjectures 1
and 2 hold when W is rational or when q ≡ 1 (mod `) and W is primitive. The general
case for Conjecture 1 appears quite elusive, so we choose to simplify matters by assuming
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that W is an `′-group, q ≡ 1 (mod `) and ϕ = 1. Under these conditions we are able to
show that our conjectures are closely related to certain previously-studied properties of
Hecke algebras which we discuss next.

Recall that the generic Hecke algebra H(W,u) of W is a certain quotient of the group
algebra of the braid group B(W ) of W where u is a set of parameters indexed by conjugacy
classes of distinguished reflections in W . To each irreducible character χ of H(W,u) over
a splitting field one associates a Schur element fχ which, in turn, is used to define a
canonical form

tW,u :=
∑

χ∈Irr(H(W,u))

1

fχ
χ

on H(W,u). This is conjectured to be a symmetrising form [6] (see Conjecture 3.3). It
is expected that the form tW,u behaves well under restriction to parabolic subgroups and
with respect to the natural map B(W )→ W ; if that is the case we say H(W,u) is strongly
symmetric (see Definition 3.4). Our main result is the following:

Theorem 1. Let G = (W,L) be a simply connected Z`-spets. Suppose that H(W,u) is
strongly symmetric, W is an `′-group and q ≡ 1 (mod `). Then Conjectures 1 and 2 hold.

Since the strongly symmetric condition is known to hold in many cases (see Proposi-
tion 3.5), we obtain:

Corollary 2. Suppose W is a spetsial irreducible `′-group, ϕ = 1 and q ≡ 1 (mod `).
Then Conjecture 1 holds for G = (W,L), and Conjecture 2 also holds, except possibly
when W is primitive of rank at least 3.

The method behind our proof of Theorem 1 may be even more interesting than the
theorem itself. For our approach we introduce and study a Yokonuma type algebra Y
attached to an arbitrary finite `-adic reflection group. We conjecture that Y is finitely
generated and free over its base ring (Conjecture 5.12) and show that this holds in many
cases. It seems likely that if ` is very good for (W,L), then Y is a symmetric algebra with
respect to a trace form whose Schur elements are derived from those of various parabolic
subalgebras of H(W,u) (Question 5.18).

When G is a rational spets which satisfies the hypotheses of Theorem 1, the principal
block B0 of G(q) is known to be Morita equivalent to SW over a finite extension of Z`.
The endomorphism algebra of the permutation module which captures this equivalence
is a Yokonuma algebra isomorphic to a certain Z`-algebra specialisation Yψ of Y (see
Section 5.5). Moreover, the quantities dim(B0) and deg Φν (ν ∈ IBr(B0)) can be re-
expressed in terms of the corresponding Schur elements of Yψ.

This motivates the study of Yψ and associated numerical properties for arbitrary `-
adic reflection groups. In Theorem 5.9 we show that if the parabolic subgroups of the
underlying `-adic reflection group are generated by reflections, then Yψ is finitely generated
and free over Z`; a result of Külshammer–Okuyama–Watanabe then allows us to conclude
that when the order of W is relatively prime to `, then Yψ is isomorphic to the group
algebra of SW (see Theorem 5.10). We obtain Theorem 1 by applying general results
concerning the arithmetic behaviour of Schur elements in symmetric algebras (as discussed
in Section 2.3) to Yψ, by playing off the form on Yψ inherited from Y against the standard
symmetrising form on the group algebra of SW .
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We close the introduction by discussing how the hypotheses on ` and W in Theorem 1
might be relaxed. If ` | |W | we have carried out explicit computations in support of
Conjecture 1 when q ≡ 1 (mod `), such as when W = G(e, 1, 3) for ` = 3 and when
W = G29 for the bad prime ` = 5 assuming Irr(B0) is defined appropriately (see [21,
Rem. 6.16]). In these situations, Irr(B0) is only partially describable in terms of the
Schur elements of the Yokonuma algebra Yψ. Even for Weyl groups it is a major open
problem to find a description involving the Schur elements of a suitable larger algebra.

Structure of the paper. In Section 2 we collect some general material necessary for
our proofs. In particular, we discuss certain divisibility properties of Schur elements in
symmetric algebras. In Section 3 we recall the construction of Hecke algebras H(W,u)
for complex reflection groups W and the origin of the trace form tW,u, define the property
of being strongly symmetric (Definition 3.4) and introduce the relevant specialisations.
In Section 4, we recall the description of the principal block of a Z`-spets, introduce
the notion of dimension and formulate our main conjectures. Our new Yokonuma type
algebra Y attached to an `-adic reflection group (W,L) is defined and studied in Section 5.
In Theorem 5.7 we describe the structure of Y over the field of fractions of the base ring
and in Theorem 5.10 we obtain, under additional conditions, a similar structural result
for `-adic specialisations of Y . In Sections 5.3 and 5.4 we formulate general freeness
and symmetrising form conjectures for Y and show that the freeness conjecture holds for
Coxeter groups (Theorem 5.13) and for most of the imprimitive complex reflection groups
(Theorem 5.14). We also discuss the relationship of Y to the algebra considered by Marin
in [32, 33] and in Section 5.5 we show that when (W,L) arises from a Weyl group the
principal block of the classical Yokonuma algebra over Z` is a certain specialisation of Y .
Section 5.6 contains the proof of Theorem 1 (Theorem 5.20) and Corollary 2.

Acknowledgement: We thank Maria Chlouveraki for providing pointers to results in
[23, §34], Markus Linckelmann for useful discussions on several aspects of the paper and
in particular on the proof of Theorem 5.10 and Burkhard Külshammer for providing
background and references for Proposition 2.8. We are indebted to Ivan Marin and Jean
Michel for their pertinent comments on an earlier version. We also thank the referee for
numerous constructive comments and recommendations which have helped to improve
the readability of the paper.

2. Background Material

2.1. Finite generation of modules. First we record a few general facts on finite gener-
ation of modules. The first is a variation on Nakayama’s lemma for nilpotent ideals which
allows for the dropping of the finite generation hypothesis. Let R be a commutative ring
with 1. Recall that the Jacobson radical J(R) of R is the intersection of all maximal left
ideals of R.

Lemma 2.1. Let I ⊆ J(R) be an ideal of R and let M,N be R-modules with N ⊆ M
and M = N + IM . Suppose that either M/N is finitely generated or that I is nilpotent.
Then N = M .
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Proof. The case that M/N is finitely generated is the usual case of the Nakayama Lemma.
Suppose that Ir = 0 for some r ≥ 1. By hypothesis, M/N = I(M/N). Hence M/N =
Ir(M/N) = 0, showing that M = N . �

Lemma 2.2. Let R be a discrete valuation ring with uniformiser π. Suppose that N ⊆
M are R-modules such that M/πM is finitely generated, M/N is finitely generated and
torsion free, and πrN = 0 for some positive integer r. Then M is finitely generated.

Proof. Since M/N is finitely generated, it suffices to show that N is finitely generated.
Now πrN = 0. So, in order to show that N is finitely generated it suffices to show that
πiN/πi+1N is finitely generated for any i ≥ 1. Multiplication by πi induces a surjective
R-module homomorphism from N/πN onto πiN/πi+1N , hence it suffices to show that
N/πN is finitely generated. By hypothesis, M/πM is finitely generated and N/(πM ∩N)
is isomorphic to a submodule of M/πM . Thus, as R is Noetherian, N/(πM∩N) is finitely
generated. But since M/N is torsion free, πM ∩N = πN . �

2.2. Clifford theory. The following is standard Clifford theory adapted to quotients of
infinite group algebras with respect to finite normal subgroups. For a ring R and ideal
I, we will regard without further comment an R/I-module as an R-module via pullback
along the canonical homomorphism R→ R/I.

Lemma 2.3. Let G be a group, T a finite normal subgroup of G and K a field of charac-
teristic 0. For θ ∈ IrrK(T ), denote by eθ the corresponding primitive central idempotent
of KT and by Gθ the stabiliser of θ in G of (finite) index nθ := |G : Gθ|. Let I be an
ideal of KG and set Iθ := eθIeθ = I ∩ eθKGeθ.

(a) There is a K-algebra isomorphism

KG/I ∼=
∏
θ

Matnθ(eθKGeθ/Iθ)

where θ runs over a set of representatives of G-orbits on IrrK(T ). Moreover,
eθKGeθ/Iθ = eθKGθeθ/Iθ = KGθeθ/Iθ for all θ ∈ IrrK(T ).

(b) The map (θ, U) 7→ IndGGθU induces a bijection between the set of pairs (θ, U),
where θ runs over representatives of G-orbits on IrrK(T ) and U runs over a set
of isomorphism classes of simple KGθeθ/Iθ-modules, and the set of isomorphism
classes of simple KG/I-modules.

Proof. Set Y = KG/I and for a ∈ KG denote by ā its image in Y . Let X be the set of
orbits of the conjugation action of G on IrrK(T ) and for each x ∈ X, let ex =

∑
θ∈x eθ.

So {ex | x ∈ X} is a set of pairwise orthogonal central idempotents of KG with 1KG =∑
x∈X ex. Consequently, {ēx | x ∈ X} is a set of pairwise orthogonal central idempotents

of Y with 1Y =
∑

x∈X ēx. Here, we abuse notation to allow for the possibility that some
ēx are equal to zero. Thus

Y =
⊕
x∈X

Y ēx

and this is also a decomposition of Y into a direct product of K-algebras. Let x ∈ X and
θ ∈ x. Then,

ēx =
∑

g∈G/Gθ

gēθg
−1
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is a decomposition of ēx into orthogonal, conjugate idempotents. Hence,

Y ēx ∼= Matnθ(ēθY ēθ)

as K-algebras. Now the first assertion of (a) follows since the inclusion of eθKGeθ in KG
induces an isomorphism eθKGeθ/Iθ ∼= ēθY ēθ.

Since eθgeθ = 0 for any g ∈ G \Gθ, and since eθ is central in KGθ,

eθKGeθ/Iθ = eθKGθeθ/Iθ = KGθeθ/Iθ,

proving the second assertion of (a).
Let V be a simple Y -module. There exists a unique x ∈ X such that ēxV 6= 0 (equiva-

lently exV = V ). By the statement and proof of (a), if θ ∈ x, then

V =
⊕

g∈G/Gθ

gēθV, (∗)

ēθV is a simple ēθY ēθ-module, and the map V 7→ (θ, ēθV ) induces a bijection between the
set of isomorphism classes of simple Y -modules and the set of pairs (θ, U), where θ runs
over representatives of G-orbits on IrrK(T ) and U runs over a set of isomorphism classes
of simple ēθY ēθ-modules. Finally, identifying ēθY ēθ-modules with KGθeθ/Iθ-modules via
the isomorphism KGθeθ/Iθ ∼= ēθY ēθ given in the proof of (a), the equation (∗) gives that
V = IndGGθ(eθV ). This proves (b). �

2.3. Symmetrising forms and divisibility. Let R be a commutative ring with 1 and
let Y be a symmetric R-algebra which is free and finitely generated as R-module. If
X is an R-basis of Y , then any symmetrising form t : Y → R determines a dual basis
X∨ = {x∨ | x ∈ X} satisfying

t(xy∨) =

{
1 for x = y ∈ X
0 for x, y ∈ X, x 6= y.

The relative projective element of Y in Z(Y ) with respect to t is defined by zt :=
∑

x∈X xx
∨.

It depends on t but not on the choice of the basis X (see [22, Sec. 2.11, 2.16] for details).
Now suppose that t is a symmetrizing form on Y and let s : Y → R be a symmetric

form (also known as trace form). Then there exists u ∈ Z(Y ) such that s = tu, where
tu ∈ Y ∗ := HomR(Y,R) is defined by tu(x) := t(ux) for x ∈ Y . The map u 7→ tu is
an R-module isomorphism between Z(Y ) and the R-module of symmetric forms on Y .
Moreover, tu is a symmetrising form if and only if u ∈ Z(Y )×. If X is an R-basis of Y
and X∨ is the dual basis with respect to t and if u ∈ Z(Y )×, then the dual basis of X
with respect to tu is equal to X∨u−1, and hence the relative projective element in Z(Y )
with respect to tu is equal to ztu

−1.
If Y is a split semisimple algebra over a field K then for any symmetric form s : Y → K,

there exist elements sχ ∈ K, χ ∈ IrrK(Y ), such that s =
∑

χ∈IrrK(Y ) sχχ. Moreover, we
claim that s is a symmetrising form if and only if all sχ are non-zero. For this, note
that s is a symmetrising form for Y if and only of its restriction to any block of Y is a
symmetrising form for the block. Thus we may assume that Y is split simple, that is, a
matrix algebra over K and here the claim is immediate from the fact that the trace map
on a matrix algebra is a symmetrising form (see for instance [22, Thm 2.11.3]).
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Lemma 2.4. Suppose that K is a field and Y is a split semisimple K-algebra. Let
s : Y → K be a symmetrising form and let sχ, χ ∈ IrrK(Y ), be elements of K such that
s =

∑
χ sχχ. Let z = zs ∈ Z(Y ).

(a) If V is a Y -module affording the irreducible character χ, then the trace of z−1 on
V equals sχ.

(b) The trace of z−2 in the left regular representation of Y equals
∑

χ∈IrrK(Y ) s
2
χ.

Proof. A straightforward calculation using the standard bases of matrix algebras shows
that

z =
∑

χ∈IrrK(Y )

s−1
χ χ(1)eχ

where eχ ∈ Z(Y ) is the central idempotent corresponding to χ. In particular, z is invert-
ible in Y with z−1 =

∑
χ sχχ(1)−1eχ. The trace formula is an immediate consequence of

this.
For (b) we note that the K-linear map

s⊗ s : Y ⊗K Y op → K, (s⊗ s)(y ⊗ y′) := s(y)s(y′),

is a symmetrising form on Y ⊗K Y op with corresponding relative projective element z⊗z.
Further, Y ∼=

⊕
χ∈IrrK(Y ) Vχ ⊗ V ∗χ as (Y ⊗K Y op)-modules, where Vχ is an irreducible

Y -module with character χ and V ∗χ is an irreducible Y op-module with character χ. So,
by part (a) applied with Y ⊗K Y op in place of Y , s⊗ s in place of s and Vχ⊗ V ∗χ in place

of V ,
∑

χ s
2
χ equals the trace of z−1 ⊗ z−1 on Y . Since z is central in Y , this trace is just

the trace of left multiplication by z−2 on Y . �

Lemma 2.5. Let G be a finite group and K a field such that KG is split semisimple.
Let t be the canonical symmetrising form on KG. Let u ∈ Z(KG)×, let α ∈ K be the
coefficient of 1 when u2 is written as a K-linear combination of elements of G and suppose
that tu =

∑
χ sχχ, sχ ∈ K. Then ∑

χ∈IrrK(Y )

s2
χ =

α

|G|
.

Proof. By a straightforward calculation using the set of group elements as basis, the
relative projective element of KG with respect to t is |G|1KG. Hence the relative projective
element of KG with respect to tu is |G|u−1. Now the result follows from Lemma 2.4 since
for any y ∈ KG, the trace of the action of y on KG via the left regular representation
equals |G|β, where β is the coefficient of 1 in the standard basis presentation of y. �

Lemma 2.6. Let O be a complete discrete valuation ring with field of fractions K of
characteristic zero and residue field O/J(O) of characteristic `. Let G = T oW be the
semidirect product of a finite abelian `-group T with an `′-group W acting faithfully on T .
Let t be the canonical symmetrising form on KG and s a symmetrising form on KG with
s = tu, u ∈ Z(KG)×. Let α be the coefficient of 1 when u2 is expressed as a K-linear
combination of elements of G.

Suppose that the restriction of s to OG takes values in O and for any x ∈ T , s(x) = δx,1.
Then u ∈ Z(OG), α ∈ O and α ≡ 1 (mod `).
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Proof. The restriction t′ := t|OG is a symmetrising form OG → O and by hypothesis
s′ := s|OG : OG → O is a symmetric form. Thus there exists u′ ∈ Z(OG) such that
s′ = t′u′ . Extending scalars, by linearity we have that s = tu′ . Since by hypothesis s = tu,
we conclude u = u′ ∈ Z(OG). This proves the first and second assertions.

For a conjugacy class C of G, denote by Ĉ the corresponding class sum. Let

u = 1 +
∑
C

αCĈ

where C runs over the non-identity conjugacy classes of G. Then for 1 6= x ∈ T we have
0 = s(x) = t(ux) = αD where D is the conjugacy class of G containing x−1. It follows
that

u = 1 +
∑
C∈C

αCĈ

where C is the set of conjugacy classes of G \ T and

α = 1 +
∑
C∈C

αCαC−1|C|,

where C−1 denotes the class containing the inverses of the elements of C. Since W acts
faithfully on T , ` divides |C| for all C ∈ C. Since u ∈ Z(OG), all αC are elements of O
and we obtain the last assertion. �

The following is a consequence of Tate duality for symmetric algebras over complete
discrete valuation rings exhibited in [16]. For an integral domain O with field of fractions
K and Y anO-algebra which is finitely generated free asO-module, we setKY := K⊗OY .

Proposition 2.7. Suppose O is a complete discrete valuation ring with field of fractions
K of characteristic zero, Y is a symmetric O-algebra such that KY is split semisimple.
Let s : KY → K be a symmetrising form with s =

∑
χ sχχ. Suppose that the restriction

of s to Y takes values in O.
Let U be a projective Y -module and suppose that there is an isomorphism of KY -

modules
K ⊗O U ∼=

⊕
χ∈Irr(KY )

V dχ
χ ,

where Vχ is a simple KY -module with character χ and dχ ∈ N0. Then∑
χ∈Irr(KY )

sχdχ ∈ O.

Proof. Let t : Y → O be a symmetrising form and let z be the relative projective element
of Y with respect to t. By [16, Prop. 2.2], for any γ ∈ EndY (U), the trace of z−1γ on
K ⊗O U lies in O. Here by z−1γ ∈ EndKY (K ⊗O U) we denote the composition of (the
extension to K of) γ with multiplication by z−1.

Denote by t̃ : KY → K the K-linear extension of t to KY . Then t̃ is a symmetrising
form for KY with relative projective element z. Hence s = t̃u for some u ∈ Z(KY ). Since
the restriction of s to Y takes values in O, we have as in the proof of Lemma 2.6 that
u ∈ Z(Y ). Let γ : U → U be multiplication by u. Since u ∈ Z(Y ), γ ∈ EndY (U). Thus
the trace of z−1γ on K ⊗O U is an element of O. Further, zu−1 is the relative projective
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element of KY with respect to s and z−1γ is multiplication by (zu−1)−1. Thus the result
follows from Lemma 2.4. �

The first statement of the next proposition is a theorem of Brauer. The second is also
well known to experts; we provide a proof of it for the convenience of the reader.

Proposition 2.8. Let G be a finite group, S a Sylow `-subgroup of G and H a subgroup
of G containing NG(S). Denote by B0(G) (respectively B0(H)) the principal `-block of G
(respectively H). Then,

(dimB0(G))` = (dimB0(H))` = |S|
and

(dimB0(G))`′ ≡ (dimB0(H))`′ (mod `).

Proof. Let O be a complete discrete valuation ring in characteristic zero with algebraically
closed residue field of characteristic `. Let b ∈ OG be the block idempotent corresponding
to B0(G) and c ∈ OH the one corresponding to B0(H). The group S is a defect group
of the principal block B0(G). Hence as O[G × G]-module, B0(G) has vertex ∆S =
{(x, x) | x ∈ S} (see [22, Rem. 6.7.14]). Further, the O[H × H]-module B0(H) is the
Green correspondent of B0(G) in H × H (see [22, Thm 6.7.2], and note that by [22,
Thm 6.13.14], B0(G) and B0(H) are Brauer correspondents). Thus, by properties of the
Green correspondence (see [22, Thm 5.2.1])

IndG×GH×H(OHc) = OGb⊕ Y
where every indecomposable O[G×G]-module summand of Y has vertex of order strictly
smaller than |∆S| = |S|. Comparing O-ranks,

|G|2

|H|2
rk(OHc) = rk(OGb) + rk(Y ).

By a standard application of Green’s indecomposability theorem and the properties of
vertices and sources (see [22, Sec. 5.1, Thm 5.12.3]), the `-part of the rank of any inde-

composable OX-lattice, for X a finite group, is greater than or equal to |X|`|Q| where Q is

a vertex of the lattice. Thus, (rk(Y ))` is strictly greater than |S| and we obtain

|G|2

|H|2
rk(OHc) ≡ rk(OGb) (mod `|S|).

Now by a theorem of Brauer (see [22, Thm 6.7.13]), the `-part of dim(B0(G)) = rk(OGb)
equals |S| and similarly for B0(H). The result follows since |G : H| ≡ 1 (mod `) by
Sylow’s theorem. �

2.4. Tits deformation theorem. We recall some features of Tits’ deformation theorem.
Let R and R′ be integral domains with field of fractions K and K ′ respectively and let
ψ : R→ R′ be a ring homomorphism. Let Y be an R-algebra which is finitely generated
and free as R-module and let Y ′ denote the R′-algebra R′ ⊗ Y obtained via extension of
scalars through ψ. Let t : Y → R be an R-linear map and let t′ : Y ′ → R′ be its R′-linear
extension through ψ.

Theorem 2.9. Suppose that KY and K ′Y ′ are both split semisimple.
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(a) The map ψ induces a bijection Irr(KY )→ Irr(K ′Y ′), χ 7→ χ′, such that

χ′(1⊗ y) = ψ∗(χ(y)) for all y ∈ Y .
Here ψ∗ : R∗ → K∗ is an extension of ψ to the integral closure R∗ of R in K and
K∗ is some extension field of K ′. The bijection preserves dimensions of underlying
simple modules.

(b) If t is the restriction to Y of a linear combination
∑

χ∈Irr(KY ) sχχ with sχ ∈ Rp,

then the R′-linear map t′ : Y ′ → R′ is the restriction to Y ′ of
∑

χ∈Irr(KY ) ψ(sχ)χ′.

Here p is the kernel of ψ, Rp is the corresponding localisation and ψ(sχ) is the
image of sχ under the unique extension of ψ to a ring homomorphism Rp → K ′.

Proof. For part (a) see [14, Thm 68.17, Cor. 68.20]. Note that the bijection given in [14] is
between the sets Irr(K̄Y ) and Irr(K̄ ′Y ′) where K̄ and K̄ ′ are algebraic closures of K and
K ′ respectively. Since KY and K ′Y ′ are split, this descends via restriction on both sides
to a bijection Irr(KY )→ Irr(K ′Y ′). Now (b) is an immediate consequence of (a). �

3. Hecke algebras and their Schur elements

Let W be a finite complex reflection group, that is, a finite subgroup of GLn(C) for
some n ≥ 1 generated by complex reflections. We denote by QW the field generated by
the traces of elements of W , a finite extension of Q. Attached to any reflection r ∈ W is
its reflecting hyperplane H = ker(1− r) in Cn; its point-wise stabiliser WH in W is cyclic,
generated by reflections. We say that r ∈ WH is the distinguished reflection associated
to H if r generates WH and has non-trivial eigenvalue exp(2πi/o(r)) of smallest possible
argument.

3.1. From braid groups to trace forms. Let B(W ) be the topological braid group of
W (see Broué–Malle–Rouquier [8]), that is, the fundamental group of the space of regular
orbits of W on Cn. So there is an associated exact sequence

1→ P (W )→ B(W )→ W → 1,

with kernel the pure braid group P (W ). Let A := ZW [u±1], where ZW denotes the ring
of integers of QW and where u = (urj) are algebraically independent elements indexed by
conjugacy classes of distinguished reflections r ∈ W and 1 ≤ j ≤ o(r). By [8, Def. 4.21] the
(generic) Hecke algebra H(W,u) of W is defined to be the quotient of the group algebra
A[B(W )] of B(W ) over A by the ideal generated by the elements (called deformed order
relations)

o(r)∏
j=1

(r− urj) (H)

for r running over the braid reflections of B(W ) (introduced as generators of the mon-
odromy around a hyperplane in [8, 2B]), with r denoting the image of r in W , a dis-
tinguished reflection. We will write A[B(W )] → H(W,u), x 7→ hx, for the associated
quotient map.

We have the following result, first conjectured in [5], with the final cases having been es-
tablished by Chavli, Marin and Tsuchioka, respectively, see [10, 34, 37] and the references
therein:
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Theorem 3.1 (‘Freeness Conjecture’). The algebra H(W,u) is A-free of rank |W |.

By results of the second author [27, Cor. 4.8] there is a positive integer z such that the
field of fractions KW of Ã := ZW [ũ±1] ⊇ A is a splitting field of H(W,u), where ũ = (ũrj)
are such that ũzrj = exp(−2πij/o(r))urj for all r, j.

Furthermore, by [28, Prop. 7.1] to each irreducible character χ of KW ⊗A H(W,u)
is associated an element fχ ∈ Ã called the Schur element of χ. The Schur element
pW := pW (u) := f1W of the trivial character 1W is called the Poincaré polynomial of
H(W,u) (a Laurent polynomial in the ũrj). For simply-laced Coxeter groups, this is in
fact the homogenisation of the usual Poincaré polynomial of W .

The collection {(χ, fχ) | χ ∈ Irr(H(W,u))} is Galois-invariant, so in particular

tW,u(h) :=
∑

χ∈Irr(H(W,u))

1

fχ
χ(h)

lies in Frac(A) for all h ∈ H(W,u). Thus, this defines a symmetric A-linear map

tW,u : H(W,u)→ Frac(A), h 7→ tW,u(h),

called the canonical trace form on H(W,u). We denote also by tW,u its Frac(A)-linear
extension to HFrac(A)(W,u) := Frac(A) ⊗A H(W,u). This form satisfies the following
property:

Proposition 3.2. There exists a set B ⊂ H(W,u) consisting of monomials in images of
braid reflections with 1 ∈ B, such that tW,u(b) = δ1,b for b ∈ B, and the images in W
of the b ∈ B under the canonical map form a system of representatives of the conjugacy
classes of W .

Proof. First note that the claim easily reduces to the case of irreducible reflection groups.
For those, it holds by the construction of the Schur elements fχ, see [25] and [28] for the
exceptional types, and [17, Thm 1.3, Lemma 4.3 and §4.5] for the infinite series. �

Furthermore, tW,u satisfies a duality with respect to a certain central element, but this
will not be of importance here. In analogy with the case of finite Coxeter groups, the
theory of spetses predicts the following, see [6, Thm-Ass. 2.1]:

Conjecture 3.3. The form tW,u takes values in A and is a symmetrising form onH(W,u).

The above conjecture has been established for all imprimitive complex reflection groups
G(e, 1,m), for example, by Malle–Mathas [31, Thm].

Let W0 ≤ W be a reflection subgroup. We denote byH(W0,u0) the Hecke algebra of W0

whose parameters u0 consist of those parameters for W whose corresponding reflections
are, up to conjugacy, contained in W0. Since non-conjugate reflections in W0 might
be conjugate in W , H(W0,u0) is a specialisation of the generic Hecke algebra of W0

corresponding to an identification of certain of its parameters. It follows from the Freeness
Conjecture (Theorem 3.1) thatH(W0,u0) is naturally a subalgebra ofH(W,u). Moreover,
by the explicit results in [27, Thm 5.2] the field KW is also a splitting field for H(W0,u0).
By tW0,u0 we will mean the corresponding specialisation of the canonical form of the generic
Hecke algebra of W0. Recall that, by a theorem of Steinberg, all parabolic subgroups of
W , that is, stabilisers in W ≤ GLn(C) of subspaces of Cn, are reflection subgroups of W .
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Definition 3.4. We will say that H(W,u) is strongly symmetric if the following holds:

(1) tW,u is a symmetrising form onH(W,u) and there is a section W →W ⊂ B(W ) of
the natural map B(W )→ W containing 1 whose image in H(W,u) is an A-basis
of H(W,u) with tW,u(hw) = δw,1 for all w ∈W; and

(2) for any parabolic subgroup W0 ≤ W , tW0,u0 is a symmetrising form on H(W0,u0)
and tW,u|H(W0,u0) = tW0,u0 .

Note that the assertion that (2) holds is referred to as the parabolic trace conjecture in
[11]. Strong symmetry is known to be satisfied in many cases; here we use the Shephard–
Todd notation for irreducible complex reflection groups:

Proposition 3.5. For the following irreducible groups, H(W,u) is strongly symmetric:

(a) for W a Coxeter group;
(b) for W = G(e, p, n) with n 6= 2 or p odd; and
(c) for W = Gi, i ∈ {4, 5, 6, 7, 8}.

Proof. First note that property (2) of being strongly symmetric follows for a parabolic
subgroup W0 of W if there exists W ⊂ B(W ) as in (1) such that

(2’) {hw | w ∈ W0} is an A-basis of H(W0,u0) and tW0,u0(hw) = δw,1 for all w ∈ W0.

For Coxeter groups, (1) and (2’) hold for any section W consisting of reduced expressions
in the standard generators, see [18, Prop. 8.1.1]. For W = G(e, p, n) the existence of W
satisfying (1) is shown in [31, Thm 5.1]. Since any parabolic subgroup of W is a Young
subgroup, that is, a product of symmetric groups with a group G(e, p, n′) for n′ ≤ n, the
Ariki–Koike basis of H(W,u) considered in [31] also satisfies (2’). (See also [6, p. 177]).
The claim for Gi, i ∈ {4, 5, 6, 7, 8}, follows from the explicit results in [2]. �

3.2. Specialisations. By a specialisation we will mean a ring homomorphism ψ : A′ → R
where A′ and R are commutative rings with A′ ⊇ A. We then set Hψ(W,u) := R⊗(A′⊗A
H(W,u)). If ψ is inclusion we will sometimes write HR(W,u) instead of Hψ(W,u). The
restriction of any specialisation ψ to a subring of A′ will again be denoted by ψ as will
the composition of ψ with any inclusion R ↪→ R′.

We will consider certain types of specialisations. For the remainder of this section, let R
be an integral domain containing ZW and let K be its field of fractions. Let ψ1 : R[ũ]→ R
be the R-linear homomorphism defined by ψ1(ũrj) := 1 for all r and j. So, ψ1 restricts to
the specialisation

A→ ZW , urj 7→ exp(2πij/o(r)).

By Bessis [1, Thm 0.1], the Hecke algebra maps to the group algebra RW of W under
ψ1. Combining this with the Freeness Conjecture, the Tits deformation theorem gives
that HK̃(W,u) := K̃ ⊗A H(W,u) is isomorphic to the group algebra K̃W , where K̃ =

Frac(R[ũ]) (see Theorem 2.9 and note that KW ⊆ K̃). Thus, we may and will identify
the irreducible characters of HK̃(W,u) with Irr(W ) via the bijection χφ ↔ φ induced by
ψ1. This also induces a labelling of Schur elements of H(W,u) by Irr(W ) and we will
henceforth denote them as fφ, φ ∈ Irr(W ). Since KW is also a splitting field for the Hecke

algebra H(W0,u0) of any reflection subgroup W0 of W we also have HK̃(W0,u) ∼= K̃W0.

We will similarly identify the irreducible characters of H(W0,u0) over K̃ with Irr(W0).
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Now let q be a prime power and suppose that R contains q±1/z. We also consider
R-linear specialisations of the form

ψq : R[ũ±1]→ R, ũrj 7→ qarj/z,

for integers arj. Any such ψq restricts to a specialisation

A→ ZW , urj 7→ ζjo(r)q
arj ,

with ζo(r) ∈ ZW an o(r)th primitive root of unity.

Lemma 3.6. For all φ ∈ Irr(W ) we have ψ1(fφ) = φ(1)/|W | and ψq(fφ) 6= 0.

Proof. The assertion on ψ1 follows since by construction the set B from Proposition 3.2
specialises under ψ1 to a system of representatives of the conjugacy classes of W . Next,
the following can be observed from the explicit form of the Schur elements (and was
first stated explicitly in [12, Thm 4.2.5]): any fφ is a product of a scalar, a monomial
in the ũrj and a product of cyclotomic polynomials Ψi over KW evaluated at monomials
Mi in the ũ±1

rj of total degree 0. Thus we need to see that ψq(Ψi(Mi)) 6= 0. This is
clear if ψq(Mi) is not a root of unity. Now ψq(Mi) can only be a root of unity, if the
powers of q cancel completely in ψq(Mi), which means that ψq(Mi) = ψ1(Mi) and so
ψq(Ψi(Mi)) = ψ1(Ψi(Mi)). But the latter is a factor of ψ1(fφ) = φ(1)/|W | and hence
non-zero. �

For the next result we note that symmetrising forms remain symmetrising after spe-
cialisation, that is if θ : O → O′ is a ring homomorphism, Y is an O-algebra which is
finitely generated and free as O-module and τ : Y → O is a symmetrising form, then the
induced O′-linear form τ ′ on Y ′ := O′ ⊗O Y satisfying τ ′(1 ⊗ y) = τ(y) for y ∈ Y is a
symmetrising form on Y ′.

Lemma 3.7. Assume that H(W,u) is symmetric over A with respect to the form tW,u with

Schur elements fφ ∈ Ã, φ ∈ Irr(H(W,u)), and let K = Frac(R). The algebra KHψq(W,u)
is split semisimple. Let t′ be the induced form on Hψq(W,u). For each φ ∈ Irr(W ), ψq(fφ)
is the corresponding Schur element of t′.

Proof. By Lemma 3.6 we have ψq(fφ) 6= 0 for all φ ∈ Irr(W ). Now ψq is a concatenation
of specialisation maps whose kernel is a prime ideal of height 1. So by [12, Thm 2.4.12],
KHψq(W,u) is also split semisimple. The result thus follows by Tits’ deformation theorem
(Theorem 2.9). �

Finally, for an indeterminate x we will also consider the spetsial specialisation

ψs : R[ũ±1]→ R[x±
1
z ], ũrj 7→

{
x

1
z if j = o(r),

1 if 1 ≤ j < o(r)

(so ψs(ur,o(r)) = x, ψs(urj) = exp(2πij/o(r)) for j < o(r)). Clearly ψ1 factorises through

ψs by composition with x1/z 7→ 1 as does any specialisation ψq for the case arj = 1
if j = o(r) and arj = 0 if j < o(r) by composition with x1/z 7→ q1/z. We write ψs,q

for this latter specialisation, which will become important in Section 5.6. The spetsial
specialisation links Schur elements of Hecke algebras to unipotent character degrees of
spetses (see Section 4.4).
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4. Conjectures for the principal block of a Z`-spets

In this section we define the dimension of the principal block of a Z`-spets, introduced
in [21, §6.2], and propose some conjectures around this notion.

4.1. The principal block of a Z`-spets. Let ` be a prime and let q be a prime power not
divisible by `. Recall that (under some conditions) the set of characters of the principal `-
block of a finite reductive group G over Fq can be described as a union of sets of characters
in bijection with the principal e-Harish Chandra series of unipotent characters of dual-
centraliser subgroups CG∗(s)

∗ where G∗ is the “Langlands dual” of G and s runs over
conjugacy classes of `-elements of G∗. The principal block of a Z`-spets as constructed
in [21] is modelled on this description: unipotent characters and the appropriate Harish-
Chandra series are provided by the theory of spetses whereas the indexing set of `-elements
and corresponding centralisers comes from the theory of `-compact groups and fusion
systems. In the next paragraph, we briefly recall this construction. Before doing so, we
point out that the description of the principal block of a Z`-spets does not involve going
over to the dual as one would expect from analogy with the group case. The reason for this
is that the fusion system construction that we rely on is for the moment only available
for simply connected `-compact groups. However, this departure does not lead to an
inconsistency in the group case under the conditions on ` with which we are concerned
(see [21, Prop. 6.8]).

We assume from now till the end of the section that ` > 2. Let W ≤ GL(L) be a
finite spetsial (see [26, §3]) `-adic reflection group on a Z`-lattice L, and let X be the
associated connected `-compact group (see [4, Thm 1.1]). We assume moreover that X
is simply connected and that ` is very good for (W,L), in the sense of [21, Def. 2.4]. Let
ϕ ∈ NGL(L)(W ) be of `′-order and G = (Wϕ−1, L) be the associated simply connected
Z`-spets. For example any Weyl group W for which ` is very good (in the classical sense)
determines a Z`-spets satisfying the above conditions.

Set G(q) := (Wϕ−1, L, q). In [4], Broto and Møller showed how to attach to these data
a fusion system F on a finite `-group S, via the associated `-compact group X (see [21,
Thm 3.2]). Here, S is an extension of a homocyclic `-group T (the toral part) by a Sylow
`-subgroup of the associated relative Weyl group Wϕ−1ζ−1 (see [21, Thm 3.6]). Note that
S and F only depend on the `-part `a of q − ζ, where ζ ∈ Z×` is the root of unity with
q ≡ ζ (mod `), not on q itself.

If G(q) arises from a connected reductive algebraic group G over Fq with Weyl group
W and a Frobenius morphism F : G → G with respect to an Fq-structure acting as ϕ
on W , then S is a Sylow `-subgroup of GF and F is the `-fusion system of GF on S (see
[21, Rem. 3.3 and Sec. 5.3]). In particular, T = (TF )` where T is a maximal e-split torus
of G.

Under our assumptions, for any s ∈ S the centraliser W (s) := CW (s) of s is again an
`-adic reflection group, a reflection subgroup of W (see the proof of [21, Thm 5.2] or [21,
Prop. 2.3])), and by [21, Prop. 6.2], it is again spetsial. We let CG(s) := (W (s)ϕ−1

s , L) be
the associated Z`-spets, where ϕs ∈ NWϕ(W (s)) is defined as in [21, §5.2].

Now recall from [24] (for the infinite series of irreducible complex reflection groups) and
[7] (for the primitive ones) that associated to G as well as to the various CG(s) there are
sets of unipotent characters Uch(G) and Uch(CG(s)), respectively. If W is a Weyl group,
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these are just the unipotent characters of an associated finite reductive group. For s ∈ S
we let

E(G, s) = {γs,λ | λ ∈ Uch(CG(s))}
denote a set in bijection with Uch(CG(s)) and call it the characters of G in the series s.
The sets Uch(CG(s)) are in canonical bijection for conjugate elements s. Moreover, these
sets only depend on `a, not on q itself. Any unipotent character λ comes with a degree
(polynomial) λ(1) ∈ Z`[x]. The degree of γs,λ ∈ E(G, s) is defined as

γs,λ(1) := |G : CG(s)|x′ λ(1) ∈ Z`[x].

Here, |G : CG(s)|x′ means the prime-to-x part of the polynomial |G|/|CG(s)| ∈ Z`[x],
where |G|, |CG(s)| are the respective order polynomials; note that the latter divides the
former by [21, Lemma 6.6].

Now by [24, Folg. 3.16 and 6.11] and [7, 4.31] for any Z`-spets H, for any root of unity
η the set of unipotent characters Uch(H) is naturally partitioned into so-called η-Harish-
Chandra series, and one among them, the principal η-Harish-Chandra series E(H, 1, η) of
Uch(H) containing 1G, is in bijection with the irreducible characters of the corresponding
Springer–Lehrer relative Weyl group. In particular, E(H, 1, 1) is in bijection with Irr(Wϕ).

With this, for ζ as above denote by E(G, s)ζ the subset of E(G, s) in bijection with
the principal ζ-Harish-Chandra series of Uch(CG(s)), and hence also in bijection with the
irreducible characters of the relative Weyl group W (s)ϕ−1

s ζ−1 .
The following definition from [21, §6.2] is inspired by the results of Cabanes–Enguehard

on unipotent `-blocks of finite reductive groups; indeed, if G is a rational spets for which
` is very good, then what we define are exactly the characters in the principal `-block of
the corresponding finite group of Lie type G(q) (see [21, Prop. 6.8]):

Definition 4.1. Let G = (Wϕ−1, L) be a simply connected Z`-spets with ϕ of `′-order
such that ` is very good for G (in the sense of [21, Def. 2.4]) and q a prime power with
q ≡ ζ (mod `). The characters in the principal block B0 of G(q) are

Irr(B0) :=
∐
s∈S/F

E(G, s)ζ ,

where the union runs over a set S/F of representatives s of F -conjugacy classes in S.
The dimension of B0 is defined as

dim(B0) =
∑

γ∈Irr(B0)

γ(1)2 =
∑
s∈S/F

∑
λ∈E(CG(s),1,ζ)

γs,λ(1)2 ∈ Z`[x].

Again, these do not depend on q but only on `a = (q − ζ)`.
The dimension of the principal `-block B0 of a finite group G with Sylow `-subgroup S

satisfies (dimB0)` = |S| (see Proposition 2.8). We conjecture that our dimension of the
principal block dim(B0) of G(q) behaves similarly:

Conjecture 4.2. Let G = (Wϕ−1, L) be a simply connected Z`-spets such that ` is very
good for G. Let q be a prime power not divisible by ` and S the associated `-group. Then

(dim(B0)|x=q)` = |S|.
By further analogy with the group case (see Proposition 2.8) we also conjecture the

following global-local statement:
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Conjecture 4.3. In the setting of Conjecture 4.2, if ζ ∈ Z×` with q ≡ ζ (mod `) we have(
dim(B0)|x=q)`′ ≡ |Wϕ−1ζ−1|`′ (mod `) .

Note that Conjectures 4.2 and 4.3 combine to form Conjecture 1.

Example 4.4. We describe S, F , and Irr(B0) in a special case relevant to Theorem 1.
Suppose that q ≡ 1 (mod `) and ϕ = 1. Then T may be identified with L/`aL where
`a||(q − 1), W = Wϕ−1ζ−1 and the action of W on T in S is the one inherited from the
action of W on L. Assume in addition that W is an `′-group. Then the condition that
` is very good for (W,L) always holds (see [21, Prop. 2.6]). Further, S = T and F is
the `-fusion system FSW (S) of the group SW on S (see [21, Thm 3.4] and [4, Thm 9.8]).
Moreover, for any s ∈ S = T the subgroup W (s)ϕ−1

s ζ−1 equals W (s) and hence E(G, s)1 is
in bijection with Irr(W (s)). So Irr(B0) is in bijection with W -classes of pairs (s, φ) where
s ∈ S and φ ∈ Irr(W (s)).

4.2. Decomposition numbers. Suppose in this subsection that |W | is prime to `, that
` | (q − 1) and that ϕ = 1. Recall the description of the principal block B0 under these
assumptions given in Example 4.4.

Since W is an `′-group and S an `-group, we may identify IBr(SW ) with the subset
Irr(W ) of Irr(SW ). Similarly, we think of the unipotent characters in B0 as the irreducible
Brauer characters of B0 and set

IBr(B0) := E(G, 1)1 ⊆ Irr(B0).

We associate decomposition numbers, and formal degrees of projective indecomposable
characters to B0 as follows.

The F -classes of elements of S are the W -conjugacy classes of S. Further, since
(|W |, `) = 1, the Glauberman–Isaacs correspondence gives that the actions of W on
S and on Irr(S) are permutation isomorphic. Thus there is a bijection between the set of
W -classes of Irr(S) and the set of W -classes of S such that if the class of s ∈ S corresponds
to the class of ŝ ∈ Irr(S), then Ws = Wŝ where Ws,Wŝ denotes the stabiliser in W of s, ŝ
respectively. Note that Ws was denoted W (s) in Example 4.4. Such a bijection between
the set of W -classes of Irr(S) and of S will be called W -equivariant if in addition the (class
of) 1 ∈ S is sent to the (class of the) trivial character of S. Note that a W -equivariant
bijection always exists.

By Clifford theory,

Irr(SW ) =
∐

θ∈Irr(S)/W

Irr(SW |θ),

where the union runs over a set Irr(S)/W of representatives θ of W -conjugacy classes of
Irr(S) and where Irr(SW |θ) denotes the set of irreducible characters of SW covering θ.
Moreover, since |W | is prime to `, Irr(SW |θ) is in bijection with Irr(Wθ).

By the description of Irr(B0) given in Example 4.4, |Irr(B0)| = |Irr(SW )|. A bijection
Θ : Irr(SW ) → Irr(B0), γ 7→ γ̂, will be said to be W -equivariant if there exists a
W -equivariant bijection Irr(S) → S such that for corresponding elements s ∈ S and
ŝ ∈ Irr(S), Θ restricts to a bijection Irr(SW |ŝ)→ E(G, s)1. Since IBr(SW ) is in bijection
with Irr(W |1), any W -equivariant bijection Irr(SW ) → Irr(B0) restricts to a bijection
IBr(SW )→ IBr(B0).
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Let Irr(SW ) → Irr(B0), γ 7→ γ̂, be a W -equivariant bijection. We declare the decom-
position matrix of B0 to be the `-decomposition matrix of SW via this bijection, that is if
dγν is the decomposition number in SW corresponding to γ ∈ Irr(SW ) and ν ∈ IBr(SW ),
then we regard dγν also as the decomposition number for γ̂ ∈ Irr(B0) and ν̂ ∈ IBr(B0).
Recall that for any γ ∈ Irr(SW ), we have γ(1) =

∑
ν∈IBr(SW ) dγνν(1). In Proposition 4.11

we show that the analogous equations hold in B0. We define

deg Φν̂ :=
∑

γ∈Irr(SW )

dγν deg(γ̂) ∈ Z`[x] for ν̂ ∈ IBr(B0),

to be the formal degrees of projective indecomposable characters of B0. The following is
a restatement of Conjecture 2.

Conjecture 4.5. In the setting of Conjecture 4.2, if W has order coprime to `, ϕ is
trivial and q ≡ 1 (mod `), then for some W -equivariant bijection Irr(SW )

∼→ Irr(B0) we
have that |S| divides (deg Φν̂)|x=q for all ν̂ ∈ IBr(B0).

4.3. The rational and the primitive cases. We’ll prove the above conjectures for
most W of order coprime to ` in Theorem 5.20. For the moment, let us see why they hold
in the rational case:

Proposition 4.6. Conjectures 4.2, 4.3, and 4.5 hold if G is a rational spets underlying a
finite reductive group.

Proof. Let G be a connected reductive group over an algebraically closed field of char-
acteristic p and F : G → G a Frobenius endomorphism with respect to an Fq-structure,
such that G is the underlying spets. That is, ϕ is the automorphism of W induced by F .
Recall that S may be identified with a Sylow `-subgroup of GF and F with the fusion
system FGF (S) (see [21, Rem. 3.3(a) and Sec. 5.3]). Let d be the order of ζ, hence the
order of q modulo `. By [21, Prop. 6.8], there is a degree preserving bijection between
Irr(B0) and the set of irreducible characters of the principal `-block B0(GF ). Note that
the bijection given in [21, Prop. 6.8] is stated to preserve defects but it is easy to check
from the setup that for any irreducible character γs,λ in B0, γs,λ(1)|x=q is the degree of the
corresponding character of B0(GF ). Now the assertion regarding Conjecture 4.2 follows
from Proposition 2.8.

As described in Section 4.1, S = T.(W1)` with W1 := Wϕ−1ζ−1 . Under our assumptions
on `, L := CG(T ) is a Levi subgroup, and moreover NG(S)F ≤ NG(T )F = NG(L)F (see
[30, Thm 5.9 and 5.14]). Let H := NG(L)F . Then Proposition 2.8 shows that in order to
prove Conjecture 4.3 for G it suffices to see that (dimB0(H))`′ ≡ |W1|`′ (mod `). Now
B0(H) is isomorphic to the principal block of H/O`′(L

F ). Since S/T acts faithfully on T ,
T is a Sylow `-subgroup of LF , so H/O`′(L

F ) ∼= T (NG(L)F/LF ) ∼= TW1, the latter by
the definition of relative Weyl groups. The result follows as TW1 has a unique `-block.

Finally, we prove Conjecture 4.5 in this situation. So assume ϕ = 1 and q ≡ 1
(mod `). Then W1 = W . As recalled above, there is a degree preserving bijection
Irr(B0)→ Irr(B0(GF )). On the other hand, by a result of Puig [36, Thm 5.5, Cor. 5.10],
as explained in [9, Prop. 8.11], the principal block of GF over a suitably large complete
discrete valuation ring O of characteristic 0, is Morita equivalent to the group algebra
O[SW ] (note here S = T as |W | is prime to ` and that W = NG(T)F/TF , where T is a
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Sylow 1-torus of G with T the Sylow `-subgroup of TF ). In particular the decomposition
numbers of O[SW ] are decomposition numbers of B0(GF ). Thus (deg Φν̂)|x=q is the di-
mension of a projective indecomposable module of B0(GF ). Now Conjecture 4.5 follows
since the dimension of any projective indecomposable module of a finite group algebra
OG is divisible by |G|` (for instance, apply Proposition 2.7 with respect to the standard
symmetrising form on OG.) �

To deal with the primitive cases, we use the following:

Lemma 4.7. Let (W,L) be a finite `-adic reflection group with |W | prime to ` and let
W0 ≤ W be a parabolic subgroup. For 1 ≤ k ≤ rk(W0) there exist bW0

k ∈ Z such that
for any prime power q ≡ 1 (mod `) and F the fusion system attached to (W,L, q), on a
homocyclic `-group T of exponent a, the number of W -orbits (F-classes) of elements of
T with stabiliser conjugate to W0 is given by

1

|NW (W0) : W0|

rk(W0)∏
k=1

(`a − bW0
k ).

Proof. Let A denote the set of 1-eigenspaces of reflections in T and denote by L = L(A)
the lattice of all intersections of elements of A with minimal element T . By Steinberg’s
theorem (see [21, Prop. 2.3]), each Y ∈ L is the centraliser in T of some parabolic
subgroup. Thus by inclusion/exclusion, the number of W -orbits of elements of T with
stabiliser conjugate to W0 is given by the Euler characteristic of the sublattice {Y ∈ L |
CT (W0) ≤ Y } divided by |NW (W0) : W0|. This Euler characteristic has the stated form
by [35, Thm 1.2]. �

The tables in [35] explicitly list the integers bW0
k (and the quantities |NW (W0) : W0|) for

all parabolic subgroups W0 of all exceptional complex reflection groups W . An immediate
consequence is the following result:

Proposition 4.8. Conjectures 4.2 and 4.3 hold for all primitive spetsial `-adic reflection
groups with q ≡ 1 (mod `).

Proof. If W is a Weyl group, the claim follows from Proposition 4.6. For the remaining
Coxeter groups, it follows from Theorem 5.20. Otherwise since ` is very good, we must
have ` - |W | and

W ∈ {G4, G6, G8, G14, G24, G25, G26, G27, G29, G32, G33, G34}.
For all of these only ϕ = 1 is possible, by [6, Prop. 3.13]. We explicitly calculate dim(B0) as
a polynomial in x using Lemma 4.7 and the tables in [7, App.]. The required congruences
for dim(B0)|x=q are readily checked via the substitution q 7→ 1 + r`a for r ∈ Z. �

4.4. Character degrees and Schur elements. The proof of Theorem 1 goes through
the connection between unipotent character degrees of spetses and Schur elements of
corresponding Hecke algebras. We describe this connection in the relevant special case.
Let G = (W,L) be a simply connected Z`-spets such that ` is very good for G and q a
prime power and let ψs : Z`[ũ±1] → Z`[x1/z] be the spetsial specialisation described in
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Section 3.2 with R = Z`. The degrees of the unipotent characters Uch(G) of G in the
principal 1-Harish-Chandra series E(G, 1)1 are given by

ψs(f1W )/ψs(fφ) for φ ∈ Irr(W )

(see [24, Sätze 3.14, 6.10] for the infinite series and [7, Ax. 4.16] for the exceptional types).
This leads to the following formula for character degrees in the principal block B0 of G(q).

Lemma 4.9. Assume q ≡ 1 (mod `). Then the degrees of the characters in Irr(B0) are
given by ∐

s∈S/F

{ |CG(T)|x′
|CCG(s)(Ts)|x′

ψs(pW )

ψs(fs,φ)
| φ ∈ Irr(W (s))

}
where T, Ts is a Sylow 1-torus of G, CG(s), respectively, and the fs,φ denote the Schur
elements of the Hecke algebra H(W (s),us) of W (s), with the parameters us inherited from
H(W,u).

Proof. As mentioned above for any s ∈ S the degrees of the unipotent characters in the
principal 1-series of E(CG(s), 1) are given by{

ψs(pW (s))/ψs(fs,φ) | φ ∈ Irr(W (s))
}
⊂ Z`[x].

Now by [28, Prop. 8.1] we have ψs(pW ) = ψs(f1) = |G : CG(T)|x′ and accordingly
ψs(pW (s)) = |CG(s) : CCG(s)(Ts)|x′ . Since by definition the degree of γs,φ ∈ Irr(B0) is

|G : CG(s)|x′ ψs(pW (s))/ψs(fs,φ),

our claim follows. �

Lemma 4.10. In the situation of Lemma 4.9, assume moreover that |W | is coprime to `.
Then the degrees of the characters in Irr(B0) are given by∐

s∈S/F

{
ψs(pW )/ψs(fs,φ) | φ ∈ Irr(W (s))

}
,

where fs,φ denotes the Schur elements of the Hecke algebra H(W (s),us).

Proof. If ` does not divide |W | then we have S = T , that is, the centraliser of any `-
element s ∈ S contains the Sylow 1-torus T, whence Ts = T for all s. Now the centraliser
of a Sylow 1-torus is a maximal torus since the coset Wφ always contains a 1-regular
element by [29, Prop. 3.3]; for this note that none of the exceptions in loc. cit. is spetsial.
So in fact CG(T) = CCG(s)(T) and the stated formula follows from Lemma 4.9. �

By analogy with the group case, we now establish a Brauer reciprocity formula for the
Brauer characters and decomposition numbers defined in Section 4.2.

Proposition 4.11. Suppose that W is `-adic spetsial of order coprime to `, ϕ = 1 and
q ≡ 1 (mod `). Then for any W -equivariant bijection ˆ : Irr(SW )→ Irr(B0) we have

deg(γ̂) =
∑

χ∈IBr(SW )

dγ,χ deg(χ̂).
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Proof. By Clifford theory the ordinary irreducible characters of SW =TW are obtained as

Irr(TW ) = {IndTWTWθ
(θ ⊗ ν) | θ ∈ Irr(T ), ν ∈ Irr(Wθ)}.

Since T = O`(TW ) and |W | is prime to `, IBr(TW ) consists of the restrictions to `′-
classes of the irreducible characters 1⊗ν, ν ∈ Irr(W ), and we may (and will) thus identify
IBr(TW ) with Irr(W ). The `-decomposition numbers of TW are then described as follows:
If η ∈ Irr(TW ) then its restriction to `′-classes η0 can be considered as character of W , and
the multiplicity of χ ∈ IBr(TW ) = Irr(W ) in η0 is just 〈η, χ〉. That is, if η = IndTWTWθ

(θ⊗ν)
as above, then this multiplicity is 〈ν, χ|Wθ

〉.
Now assume that γ ∈ Irr(B0). Then there is s ∈ T and λ ∈ Uch(CG(s))1 such that

γ = γs,λ. Let φ ∈ Irr(W (s)) be the irreducible character indexing λ ∈ Uch(CG(s))1. Now
by Lemma 4.10 we have γs,λ(1) = ψs(pW )/ψs(fs,φ). On the other hand, for γ′ ∈ E(G, 1)1

labelled by χ ∈ Irr(W ) we have γ′(1) = ψs(pW )/ψs(fχ). Thus the required equality reads

ψs(fs,φ)−1 =
∑

χ∈Irr(W )

〈φ, χ|Ws〉ψs(fχ)−1.

But this holds for spetsialW by the validity of 1-Howlett–Lehrer theory, see [24, Sätze 3.14,
6.10] for the infinite series and [7, Ax. 4.16] for the exceptional types. �

5. Yokonuma type algebras for torus normalisers for `-adic reflection
groups

When the order of W is prime to ` our definition of principal block and Conjectures 4.2,
4.3 and 4.5 are related to a generalisation of Yokonuma algebras to `-adic reflection
groups. The classical Yokonuma algebra was defined as the endomorphism algebra of the
permutation representation of a finite Chevalley group on a maximal unipotent subgroup
[38]. It is a deformation of the group algebra of the normaliser of a maximally split torus,
to which it becomes isomorphic over a splitting field (see [23, §34]). We propose to extend
this construction over the `-adic integers to “torus normalisers” arising from `-compact
groups attached to arbitrary `-adic reflection groups. This will allow us in Section 5.6 to
prove Conjectures 4.2, 4.3 and 4.5 in the case q ≡ 1 (mod `) and ϕ = 1.

5.1. Definition and first properties. Let ` be a prime and W be a finite `-adic reflec-
tion group, that is, W ≤ GL(L) with L = Zn` . Let q be a prime power with q ≡ 1 (mod `)
and a the positive integer such that `a||(q− 1). Let T = L/`aL. Then T is homocyclic of
exponent `a and is equipped with a natural action of W . For any reflection r ∈ W we set
Tr := [T, r] := 〈[t, r] | t ∈ T 〉 ≤ T .

The topological braid group B := B(W ) of W (see Section 3.1) acts naturally on T

through its quotient W . We let B̂ be the semidirect product of T with B. Observe that

P (W ) acts trivially on T , so B̂ is a (non-split) extension of T × P (W ) by W .
Recall from Section 3.1 the indeterminates u = (urj) attached to W . We define a new

set v = (vrj) of indeterminates by the linear relations

urj = ζjo(r)(1 + |Tr|vrj) for r ∈ W, 1 ≤ j ≤ o(r),

where, for any k|(`−1), ζk ∈ Z` denotes a primitive kth root of unity. Let Â = Z`[v,u−1].
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Definition 5.1. Define Y(W,a,v) to be the quotient of the group algebra Â[B̂] of B̂ =

T oB over Â by the ideal generated by the deformed order relations

o(r)∏
j=1

(
r− ζjo(r)(1 + vrjEr)

)
with Er :=

∑
t∈Tr

t ∈ Â[T ], (†)

where r runs over the braid reflections of B ≤ B̂ and r denotes the image of r in W . We

will write x 7→ yx for the canonical map Â[B̂]→ Y(W,a,v).

When W is a Weyl group, the deformed order relation (†) generalises the quadratic one
from the classical Yokonuma algebra [20, Thm 2(2.1)], see also [32, 2.2(3)]. In Section 5.5,
we show that in this case a suitable specialisation of Y is isomorphic to a truncation of
the classical Yokonuma algebra.

As far as we can tell, there is no direct relation between the algebra Y(W,a,v) de-
fined above and the “cyclotomic Yokonuma–Hecke algebra” considered by Chlouveraki–
d’Andecy [13, §2] for the reflection group W = G(d, 1, n); in their algebra, the underlying
reflection group W only acts via its quotient G(1, 1, n) ∼= Sn on the torus. On the other
hand, our construction is related to an algebra defined by Marin [32], see Remark 5.16
below.

Henceforth, for simplicity we set Y := Y(W,a,v). Note that the specialisation ψ1 :

Z`[u±1]→ Z`, urj 7→ ζjo(r), extends to a homomorphism Â→ Z`, vrj 7→ 0.

Lemma 5.2. The following hold:

(a) Under the specialisation ψ1 : Â → Z`, vrj 7→ 0 (so urj 7→ ζjo(r)), the algebra Y
specialises to the group algebra of TW .

(b) The quotient of Y by the ideal I generated by the {yt− 1 | t ∈ T} is isomorphic to

the extension Â⊗A H(W,u) of the generic Hecke algebra of W .

(c) The natural Â-module homomorphism Y → H(W,u), yr 7→ hr, in (b) has a

splitting H(W,u)→ Â[`−1]⊗Â Y given by hr 7→ |T |−1
∑

t∈T ytyr.

Proof. The first parts follows directly from the deformed order relation (†) and the corre-

sponding result of Bessis [1] for B. For (b), let J1 be the ideal of Â[B̂] generated by the

elements {t − 1 | t ∈ T}. Then I is the ideal of Â[B̂] generated by J1 and the elements

(†) as r runs over the braid reflections. Let L be the ideal of Â[B̂] generated by J1 and

the
∏o(r)

j=1(r − urj) as r runs over braid reflections. Then H(W,u) = Â[B]/L. For an

element x =
∏o(r)

j=1(r− ζjo(r)(1 +Ervrj)) ∈ J1 of the form (†) set x′ =
∏o(r)

j=1(r− urj). Then

x+ J1 = x′ + J1, whence I = L.
For (c), note that |T |−1

∑
t∈T yt is a central idempotent of Â[`−1]⊗Â Y . �

We make some further straightforward observations. First, since for ` > 2 all reflections
r in an `-adic reflection group have order prime to `, in that case Tr ∼= Z/`aZ.

For all braid reflections r, the element Er commutes with r and E2
r = |Tr|Er. Thus, over

Â[`−1], the element E ′r = |Tr|−1Er is idempotent. Multiplying (†) with E ′r respectively



22 RADHA KESSAR, GUNTER MALLE, AND JASON SEMERARO

1− E ′r we obtain the elements

(1− E ′r)(ro(r) − 1) and E ′r

o(r)∏
j=1

(r− urj), (†′)

which generate the same ideal as (†) over Â[`−1]. Thus, (†) “interpolates” between the
group relation for r and the deformed Hecke algebra relation (H) for r. Let us also note
the following:

Lemma 5.3. The constant coefficient in the deformed order relation (†) is invertible

in Â[T ].

Proof. The constant term in the polynomial relation (†) for a braid reflection r is (up to a

root of unity) a product of factors 1+vrjEr, which has inverse 1−ζjo(r)vrj/urjEr ∈ Â[T ]. �

We now give a more tangible description of Y(W,a,v). Recall that the braid group
B has a presentation in terms of certain sets of braid reflections together with so-called
braid relations, encoded in braid diagrams, such that adding the order relations for the
chosen braid reflections, we obtain a presentation of W (see [8, Thm 2.27] and Bessis [1,
Thm 0.1]). Choose reflections r1, . . . , rm in W corresponding to a braid diagram for B.
It is known that any distinguished reflection of W is then conjugate to one of the ri,
and by their construction all braid reflections projecting onto a fixed reflection of W are
conjugate in B. Then using Lemma 5.3 we see that Y is the associative unital Â-algebra
generated by elements {yt, yri | t ∈ T, 1 ≤ i ≤ m} subject to

• the yt satisfy the same relations as the corresponding group elements t (i.e., they
generate a subalgebra isomorphic to (possibly a quotient of) the group algebra

Â[T ]);
• the action relations between the t, ri, with t replaced by yt and ri by yri ;
• the braid relations between the yri ; and
• the deformed order relations (†) for the yri .

5.2. On the structure of specialised Yokonuma type algebras. We show that
under some additional hypothesis certain specialisations of Y are isomorphic to the group
algebra of TW . The main results are Theorem 5.7 and Theorem 5.10.

For a specialisation ψ : Â→ R to a commutative ring R, let Yψ := R⊗Â Y denote the

extension of scalars by ψ. Then Yψ is the quotient of the group algebra RB̂ by the ideal〈 o(r)∏
j=1

(
r− ζjo(r)(1 + ψ(vrj)Er)

)
| r ∈ B braid reflection

〉
.

Let W0 be a parabolic subgroup of W and B0 = B(W0) be its braid group. In [8, §2D] is
constructed an embedding B0 ↪→ B, well-defined up to P -conjugation, where B = B(W ),
P = P (W ). By [8, Prop. 2.29 and 2.18] this satisfies:

Lemma 5.4. Let W0 be a parabolic subgroup of W . Let B̃0 be the inverse image of W0

in B and let P̃0 be the subgroup of P generated by the elements ro(r), as r runs over the
distinguished reflections in W \W0. Let B0 be the braid group of W0. The above inclusion

B0 ↪→ B has image contained in B̃0 and induces an isomorphism B0
∼→ B̃0/P̃0.
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So we have the following diagram with exact columns:

1 1 1
↓ ↓ ↓
P0 ↪→ P = P̃0 o P0 = P
↓ ↓ ↓
B0 ↪→ B̃0 = P̃0 oB0 ↪→ B
↓ ↓ ↓
W0 = W0 ↪→ W
↓ ↓ ↓
1 1 1

Remark 5.5. Examples show that the isomorphism B0
∼→ B̃0/P̃0 might more generally

hold for all reflection subgroups W0 of W generated by distinguished reflections (see e.g.
[8, Prop. 3.24]), so that the assumptions of the subsequent Theorem 5.7 might be relaxed
accordingly. We will not need this here.

If Wθ is a parabolic subgroup of W , we will denote by uθ the set u0 in the notation of
Section 3.1 if Wθ is the reflection subgroup W0.

Lemma 5.6. Let R be an integral domain containing the exp(T )th roots of unity with

field of fractions K of characteristic 0 and let ψ : Â→ R be a specialisation. Let I be the

ideal of RB̂ generated by{ o(r)∏
j=1

(
r− ζjo(r)(1 + ψ(vrj)Er)

)
| r ∈ B braid reflection

}
.

Let θ ∈ IrrK(T ) and eθ ∈ KT the corresponding central idempotent. Suppose that the

stabiliser Wθ of θ is a parabolic subgroup of W . Then eθRB̂eθ/eθIeθ ∼= Hψ(Wθ,uθ) as

R-algebras. Here we regard RB̂ as a subset of KB̂.

Note that the assumption that R contains the exp(T )th roots of unity is needed in
order to ensure that any ordinary irreducible character of T is R-valued.

Proof. Let B̃θ be the full inverse image of Wθ in B. For a braid reflection r ∈ B set

ir :=

o(r)∏
j=1

(
r− ζjo(r)(1 + ψ(vrj)Er)

)
= (1− E ′r)(ro(r) − 1) + E ′r

o(r)∏
j=1

(r− ψ(urj))

where E ′r = |Tr|−1Er. Then

{eθxiryeθ | x, y ∈ B̂, r ∈ B braid reflection}
generates eθIeθ as R-module. The set of braid reflections is invariant under conjugation
by B, and vrj = vr′j whenever r and r′ are conjugate. Thus, if x = tg, y = hs with
t, s ∈ T and g, h ∈ B and r is a braid reflection, then

eθxiryeθ = θ(t)θ(s)eθigrgheθ, where θ(t), θ(s) ∈ R.
Thus, eθIeθ is the R-span of {eθirxeθ | x ∈ B, r ∈ B braid reflection}.
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Now r ∈ Wθ if and only if θ(t−1tr) = 1 for all t ∈ T . Thus, eθE
′
r = eθ if r ∈ Wθ and

zero otherwise, and so

eθir =

{
eθ(r

o(r) − 1) if r /∈ Wθ,

eθ
∏

j(r− ψ(urj)) if r ∈ Wθ.

Further, since ro(r) ∈ P commutes with T , we have eθ(r
o(r)− 1)xeθ = (ro(r)− 1)eθxeθ and

if r ∈ Wθ, then

eθ
∏
j

(r− ψ(urj))xeθ =
∏
j

(r− ψ(urj))eθxeθ.

For any x ∈ B, eθxeθ = xeθ if x ∈ B̃θ and zero otherwise. Hence eθIeθ is the R-span of{
(ro(r) − 1)xeθ | x ∈ B̃θ, r /∈ Wθ

}
∪
{∏

j

(r− ψ(urj))xeθ | x ∈ B̃θ, r ∈ Wθ

}
.

By the same argument we have that eθRB̂eθ = eθR[TB̃θ]eθ and since eθ is TB̃θ-stable and

eθ is idempotent we also have eθR[TB̃θ]eθ = R[TB̃θ]eθ. Since θ is linear and B̃θ-stable,

there is an R-algebra isomorphism RB̃θ
∼= R[TB̃θ]eθ given by x 7→ xeθ. This induces an

isomorphism

RB̃θ/J ∼= R[TB̃θ]eθ/eθIeθ

where J ERB̃θ is the ideal generated by {ro(r)− 1 | r /∈ Wθ}∪{
∏

j(r−ψ(urj)) | r ∈ Wθ}.
By Lemmas 5.4 and 5.2(b), RB̃θ/J ∼= Hψ(Wθ,uθ). �

Theorem 5.7. Assume all stabilisers Wθ of elements θ ∈ Irr(T ) are parabolic subgroups
of W . Let K be a field of characteristic 0 containing the |T |th roots of unity and let

ψ : Â→ K be a ring homomorphism. Then

(a)

Yψ ∼=
∏
θ

Mat|W :Wθ|(K)⊗K Hψ(Wθ,uθ)

as θ runs over a set of representatives of W -orbits on IrrK(T );
(b) dimK Yψ = |TW |.
(c) Suppose that KW ⊆ K and ψ is the inclusion homomorphisms. Then Yψ ∼=

K[TW ].

Proof. Part (a) is immediate from Lemmas 2.3 and 5.6 applied with R = K. Part (b)
follows from part (a) by Theorem 3.1 and Lemma 2.3(b) applied with G = TW .

Now assume K and ψ are as in (c). As explained in Section 3.2, for all θ ∈ Irr(T ),
Hψ(Wθ,uθ) = K ⊗Â H(Wθ,uθ) ∼= KWθ. Now (c) follows from (a) and Lemma 2.3(a)
applied with G = TW and I = 0, noting that K(TW )θeθ ∼= KWθ. �

We now turn to specialisations of Â to finite extensions of Z`. For the rest of this
subsection, the following notation will be in effect. Let Z` ⊆ O be a complete discrete
valuation ring with uniformiser π, residue field k and field of fractions K. Let ψ : Â→ O
be a Z`-algebra homomorphism and denote by ψ̄ the composition of ψ with the canonical

map O → k. Recall that for x ∈ Â[B̂] we denote by yx its image in Y . For y ∈ Y let
ỹ := 1O ⊗ y ∈ Yψ, and ȳ := 1k ⊗ y ∈ Yψ̄.
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Lemma 5.8. Let W be a set of coset representatives of P in B and let J be the ideal of
Yψ generated by {ỹt − 1 | t ∈ T} and π. Then, kW ∼= Yψ/J via the map which sends
w ∈ W to ỹw + J for w ∈W lifting w.

Proof. For a distinguished reflection r ∈ W , ` divides |Tr|, hence urj ∈ I. Now the result
follows from Lemma 5.2(b) (suitably adapted to the coefficient ring O). �

Theorem 5.9. Let W be a set of coset representatives of P in B. If all stabilisers Wθ of
elements θ ∈ Irr(T ) are parabolic subgroups of W , then X := {ỹtỹw | t ∈ T, w ∈W} is
an O-basis of Yψ.

Proof. We first show that {ȳtȳw | t ∈ T, w ∈ W} generates Yψ̄ as k-vector space. Let
R ⊆ Yψ̄ be the k-span of {ȳt | t ∈ T}. Then R is a commutative k-subalgebra of Yψ̄. Let
Q be the ideal of R generated by {ȳt − 1 | t ∈ T}. Since T is a finite abelian `-group,
Q is a nilpotent ideal of R. We consider Yψ̄ as a left R-module. Since T is normal in

B̂, the R-submodule QYψ̄ of Yψ̄ is an ideal of Yψ̄. Further, QYψ̄ is the image of the
ideal J of Lemma 5.8 in Yψ/πYψ ∼= Yψ̄ and for any w ∈ W, ȳw + QYψ̄ = ỹw + J . So,
by Lemma 5.8, {ȳw + QYψ̄ | w ∈ W} generates Yψ̄/QYψ̄ as k-vector space and hence
as R-module. Applying Lemma 2.1 with M = Yψ̄ and the nilpotent ideal Q we obtain
that {ȳw | w ∈ W} generates Yψ̄ as R-module. Since R is generated by {ȳt | t ∈ T} as
k-vector space we have the required result.

Now we claim that in order to prove the theorem it suffices to prove that Yψ is finitely
generated as O-module. Indeed, suppose that Yψ is finitely generated as O-module. Then
by the previous paragraph and the standard Nakayama lemma (Lemma 2.1) applied to
the ring O and ideal πO, the set X = {ỹtỹw | t ∈ T,w ∈W} generates Yψ as O-module.
Then 1 ⊗ X generates K ⊗O Yψ as K-vector space and since the latter has dimension
|TW | by Theorem 5.7(b), X is an O basis of Yψ.

It remains only to show that Yψ is finitely generated as O-module. For this, suppose

first that O-contains the |T |th roots of unity. Let I be the ideal of OB̂ generated by the
(†)-relations, let

I ′ =
⊕

θ,µ∈Irr(T )

eθIeµ ⊆
⊕

θ,µ∈Irr(T )

eθOB̂eµ

with eθ ∈ KT as in Lemma 5.6 and let Ĩ = OB̂∩I ′. Since I ′ is an ideal of
⊕

eθOB̂eµ, Ĩ is

an ideal of OB̂ containing I. On the other hand, |T |eθ ∈ OB̂ for all θ, hence |T |2eθIeµ ⊆ I

and |T |2Ĩ ⊆ I. The kernel of the composition of the inclusion OB̂ ↪→
⊕

eθOB̂eµ with the

surjection
⊕

eθOB̂eµ �
⊕

eθOB̂eµ/I ′ is Ĩ. Thus, OB̂/Ĩ is isomorphic to a submodule

of
⊕

eθOB̂eµ/I ′. On the other hand,⊕
θ,µ∈Irr(T )

eθOB̂eµ/I ′ ∼=
⊕

θ,µ∈Irr(T )

eθOB̂eµ/eθIeµ.

If µ = xθ for x ∈ B, then eθOB̂eµ/eθIeµ ∼= eθOB̂eθ/eθIeθ via right multiplication by x

and it follows from Lemma 5.6 and Theorem 3.1 that eθOB̂eθ/eθIeθ is finitely generated

free as O-module. If θ, µ are in different W -orbits, then eθOB̂eµ = 0. By the above

displayed equation,
⊕

eθOB̂eµ/I ′ is finitely generated free as O-module. Since O is a

principal ideal domain, and since OB̂/Ĩ is isomorphic to a submodule of
⊕

eθOB̂eµ/I ′,
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it follows that OB̂/Ĩ is finitely generated free as O-module. Also, πr(Ĩ/I) = 0 for r
equal to twice the π-adic valuation of |T |. We saw above that Yψ/πYψ ∼= Yψ̄ is finitely
generated as k-vector space and hence as O-module. Thus by Lemma 2.2 applied with

M = Yψ = OB̂/I and N = Ĩ/I we have Yψ is finitely generated as O-module.
Now consider the general case. Let O′ be a finite extension of O containing the |T |th

roots of unity and let ψ′ be the composition of ψ with inclusion of O in O′. By the
previous part, applied with ψ′ in place of ψ, Yψ′ is finitely generated as O′-module. Since
O′ is a finite extension of O, Yψ′ is also finitely generated as O-module. Since O is
a direct summand of O′ as O-module, the inclusion O ↪→ O′ is pure. Thus the map
Yψ → O′ ⊗O Yψ ∼= Yψ′ , y 7→ 1 ⊗ y, is injective and consequently Yψ is isomorphic to
an O-submodule of Yψ′ . Since O is Noetherian and since as shown above Yψ′ is finitely
generated as O-module, Yψ is finitely generated as O-module. �

The following is an application of a theorem of Külshammer, Okuyama and Watanabe
(see [22, Thm 4.8.2]). Recall that if R is a commutative ring and C is a subalgebra of an
R-algebra B, then B is relatively C-separable if B is a direct summand of B ⊗C B as a
(B,B)-bimodule.

Theorem 5.10. Suppose that W is an `′-group. Then there exists an O-algebra isomor-
phism Yψ ∼= O[TW ] sending ỹt to t for any t ∈ T .

Proof. Let W be a set of coset representatives of P in B. Since W is an `′-group, Wθ

is a parabolic subgroup of W for all θ ∈ Irr(T ). Thus, by Theorem 5.9, {ỹtỹw | t ∈
T, w ∈W} is an O-basis of Yψ. Further, we may regard OT as an O-subalgebra of Yψ
via the identification of OT with the subalgebra generated by {ỹt | t ∈ T}. Under this
identification, again via Theorem 5.9, there is a homomorphism of (OT,OT )-bimodules
γ : O[TW ]→ Yψ defined by γ(tw) = ỹtỹw.

Let J be the ideal of Yψ generated by {ỹt−1 | t ∈ T} and π. It follows from Lemma 5.8
that the composition of γ with the natural surjection Yψ → Yψ/J is an O-algebra homo-
morphism. Now we may apply [22, Thm 4.8.2] to obtain an O-algebra homomorphism
σ : O[TW ] → Yψ extending the O-algebra homomorphism O[TW ] → Yψ/J obtained
above from γ and satisfying σ(t) = ỹt for all t ∈ T . For this one needs to have that J is
contained in the radical of Yψ and that O[TW ] is relatively OT -separable. The second
condition holds since W is an `′-group (see [22, Prop. 2.6.9]) whereas the first condition

holds since T is a finite normal `-subgroup of B̂ and, by Theorem 5.9, Yψ is finitely
generated as O-module.

The surjectivity of σ follows by Nakayama’s lemma since the composition of σ with
Yψ → Yψ/I is surjective and then the injectivity follows since both algebras are free of
the same rank. �

Remark 5.11. The assumption of Theorem 5.7 on stabilisers is satisfied whenever ` is
very good for W , e.g., when |W | is coprime to `, or if W = G(e, 1, n) with e ≥ 2, see [21,
Prop. 2.3].

5.3. Freeness. We propose the following, analogous to the (now proven) Freeness Con-
jecture (Theorem 3.1) for cyclotomic Hecke algebras:
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Conjecture 5.12. The algebra Y is free over Â of rank |TW |. More precisely, there is
a section W → W ⊂ B of the natural map B → W containing 1 such that {ytyw | t ∈
T, w ∈W} is an Â-basis of Y.

For Weyl groups and parameters occurring in finite reductive groups, the freeness follows
from the construction as an endomorphism algebra, and the dimension from the number
of double cosets of a maximal unipotent subgroup, that is, the Bruhat decomposition; see
Lusztig [23, 34.2–34.10] for a detailed investigation. We propose a proof in the case of
finite Coxeter groups and for most infinite series of complex reflection groups.

Theorem 5.13. Conjecture 5.12 holds for any finite Coxeter group.

Proof. Assume that W is a Coxeter group and choose a presentation of B on braid re-
flections r1, . . . , rm ∈ B mapping to the Coxeter generators of W . Clearly, the set of all
monomials in the yt, yri forms a generating system for Y as an Â-module. By the ‘action

relations’ any such monomial can be rewritten into an Â-linear combination of elements
ytyw with t ∈ T and w a monomial in the generators ri, 1 ≤ i ≤ m. Now by Mat-
sumoto’s lemma, by using the braid relations plus the quadratic relations (†) expressing

y2
ri

as a linear combination of smaller powers of yri , w can be rewritten into an Â[T ]-linear
combination of elements from a fixed set W ⊂ B of reduced expressions of elements of W .

Thus any monomial in the generators is an Â-linear combination of elements ytyw with
t ∈ T and w ∈ W. Since the yt satisfy the same relations as the corresponding t ∈ T ,
there are at most |T | distinct elements yt, so we have identified a generating system for Y
of cardinality |TW |. By Theorem 5.7 this must be free over K, hence an Â-basis of Y . �

Theorem 5.14. Conjecture 5.12 holds for W = G(e, p, n) with e|(` − 1) for any divisor
p of e, except possibly when n = 2, e, p are both even and p 6= e.

Proof. The group W = G(e, p, n) is a normal reflection subgroup of W1 := G(e, 1, n) of
index p. First assume that p < e. Then the braid group B of W is normal in the braid
group B1 of W1 of index p by [8, §3.B1]. Also, the corresponding tori T can be identified,
such that T.B is normal in T.B1 of index p. A system of coset representatives is given
by {ri1 | 0 ≤ i ≤ p − 1}, where r1 ∈ B1 lifts a distinguished reflection r ∈ W1 of order e.
Let ζe be a primitive eth root of unity and set p′ := e/p. Recall the parameters urj,

1 ≤ j ≤ p′, for Y at the reflection r. Let K be a sufficiently large extension of Frac(Â).

Consider parameters u′rj := u
1/p
rj for 1 ≤ j ≤ p′, and u′r,j+p′ := ζp

′
e u
′
rj for 1 ≤ j ≤ e − p′.

Now over K, the relation (†) for y1 := yr1 can be rewritten as

(1− E ′)(ye1 − 1) + E ′
e∏
j=1

(y1 − u′rj) = 0,

with E ′ := |Tr|−1Er (see (†′) above). Note that
∏p−1

i=0 (y1 − u′r,j+p′i) = yp1 − urj for any j.
Similarly, over K the relation (†) for the generator yp1 of Y can be written as

(1− E ′)(ypp
′

1 − 1) + E ′
p′∏
j=1

(yp1 − urj) = 0.

Thus, we obtain the same relation for yp1 in Y as before.
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Let Y1 be the quotient of Â[T.B1] by the deformed order relations, which agree with

those for Y as we just saw and hence can be written over Â, except in the excluded case
n = 2, e, p both even, when G(e, p, 2) contains an additional class of reflections.

We claim that the conjecture holds for W1. Our proof for this closely follows some
arguments in Bremke–Malle [3]. Let r1, . . . , rn ∈ B be braid reflections corresponding to
the standard presentation, so that r2, . . . , rn generate the braid group on n strands (of
type An−1) and (r1r2)2 = (r2r1)2. Set y2 := yr2 . Now by Lemma 5.15 below for any
a, b ≥ 1 we have

y2y
a
1y2y

b
1 = αyb1y2y

a
1y2 +

b∑
i=1

(αiy
a+b−i
1 y2y

i
1 + α′iy

i
1y2y

a+b−i
1 )

for suitable α ∈ Â[T ]× and αi, α
′
i ∈ Â[T ]. With this, one deduces as in the proof of [3,

Prop. 2.4] that there is a set B1 ⊂ B1 of cardinality |W1| consisting of monomials in the
ri, as in [3, Lemma 1.5], such that any monomial in the yt, yi can be rewritten in Y1 into

an Â-linear combination of the |TW1| products B := {ytyw | t ∈ T, w ∈ B1}. Thus, B
is linearly independent over K by Theorem 5.7 and so an Â-basis of Y1. This proves our
claim for W1.

Now Â[T.B1] =
⊕p−1

i=0 Â[T.B]ri1 is Z/pZ-graded and multiplication by r1 defines Â-
module isomorphisms between the summands. Furthermore, the defining ideal I for Y
in Â[T.B] is contained in the defining ideal I1 of Y1 in Â[T.B1], and I1 =

⊕p−1
i=0 Ir

i
1 is

graded. So Y1 = Â[T.B1]/I1 =
⊕p−1

i=0 Yyi1 and multiplication with y1 induces Â-module

isomorphisms between the summands on the right. By construction the Â-basis B of Y1

has the property that B =
⋃p−1
i=0 (B ∩ Yyi1), hence B ∩ Y is an Â-free generating system

of Y .
Finally assume that p = e. Since G(e, e, 2) is a Coxeter group (the dihedral group of

order 2e), by Theorem 5.13 we may assume n ≥ 3. In this case, the braid group B of
W = G(e, e, n) is a normal subgroup of index e of the quotient B̄1 = B1/〈re1〉 of the braid

group of W1 (see [8, Prop. 3.24]). Thus, Y is an Â-subalgebra of Â[T.B1]/I where I is
generated by re1 − 1 and the relations (†) for r2, . . . , rn. We can now argue precisely as in
the previous case. �

The following was used in the preceding proof:

Lemma 5.15. Let Y = Y(G(e, 1, n)) and y1, y2 ∈ Y images of braid reflections satisfying
y2y1y2y1 = y1y2y1y2 and such that the corresponding reflections r1, r2 ∈ W have order e, 2
respectively. Then for all integers a, b ≥ 1 there exist α ∈ Â[T ]× and αi, α

′
i ∈ Â[T ] such

that

y2y
a
1y2y

b
1 = αyb1y2y

a
1y2 +

b∑
i=1

(αiy
a+b−i
1 y2y

i
1 + α′iy

i
1y2y

a+b−i
1 ).

Proof. Write the relation (†) for y2 as y2
2 = λy2 + µ with µ ∈ Â[T ]× and λ ∈ Â[T ], so

y−1
2 = µ−1y2−λµ−1. The relation between y1, y2 implies ya1y2y1y2 = y2y1y2y

a
1 for all a ≥ 1.
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Thus we find

y2y
a
1y2y1 = y2y

a
1y2y1 · y2y

−1
2 = y2

2y1y2y
a
1y
−1
2 = (λy2 + µ)y1y2y

a
1(µ−1y2 − λµ−1)

= µy1y2y
a
1y2µ

−1 + λy2y1y2y
a
1y
−1
2 − µy1y2y

a
1λµ

−1

= µy1y2y
a
1y2µ

−1 + λya1y2y1 − µy1y2y
a
1λµ

−1

= µ′y1y2y
a
1y2 + λya1y2y1 − λ′y1y2y

a
1

for suitable µ′ ∈ Â[T ]× and λ′ ∈ Â[T ], giving the claim for b = 1. For b = 2, using the
previous result twice we find

y2y
a
1y2y

2
1 = (µ′y1y2y

a
1y2 + λya1y2y1 − λ′y1y2y

a
1)y1

= µ′y1y2y
a
1y2y1 + λya1y2y

2
1 − λ′y1y2y

a+1
1

= µ′y1(µ′y1y2y
a
1y2 + λya1y2y1 − λ′y1y2y

a
1) + λya1y2y

2
1 − λ′y1y2y

a+1
1

= µ′′y2
1y2y

a
1y2 +

2∑
i=1

(αiy
a+2−i
1 y2y

i
1 + α′iy

i
1y2y

a+2−i
1 )

for suitable µ′′, αi, α
′
i. A straightforward induction yields the claim for arbitrary b. �

Remark 5.16. Marin [32, Def. 5.4] defines for arbitrary complex reflection groups W

an Â-algebra M attached to W as follows: let L be the lattice of intersections of the
hyperplane arrangement of W . Then M is the quotient of the group algebra over Â of the
semidirect product LoB(W ) by the deformed order relations (†) for the braid reflections
of B(W ). This algebra is generated by images of braid reflections r′ and idempotents er,

r ∈ W a reflection (by [32, 5.1]). Marin shows [33, Thm 1.3] that M is a free Â-module
of rank |W ||L|. If W is `-adic, there is a natural morphism

iW : M → Â[`−1]⊗Â Y , r′ 7→ yr, er 7→ `−aEr,

from Marin’s algebra to ours. We expect this to be injective, but in general far from
surjective, since his algebra is free of rank independent of ` (compare to Theorem 5.7).

5.4. A trace form. Assume for the rest of the section that Wθ is a parabolic subgroup of
W for all θ ∈ Irr(T ); this holds whenever ` is very good for (W,L), see Remark 5.11. Let K
be an extension of Q` by the `ath roots of unity. Let ũ = (ũrj) be as in Section 3.1 and let

K̃ = Frac(K[ũ]). Recall from Section 3.2 that for any θ ∈ Irr(T ), K̃⊗H(Wθ,uθ) ∼= K̃Wθ

is split semisimple and the irreducible characters of H(Wθ,uθ) over K̃ are identified with
Irr(Wθ). Here, as before we denote by uθ the set u0 in the notation of Section 3.1 if Wθ

is the reflection subgroup W0. Then, with U a K̃ ⊗ H(Wθ,uθ)-module affording φ and

Uθ,φ := IndB̂
B̂θ

(U), Theorem 5.7(a) shows

Irr(YK̃) = {Uθ,φ | θ ∈ Irr(T )/W, φ ∈ Irr(Wθ)}.
We let χθ,φ denote the character of Uθ,φ.

We consider the following non-degenerate trace form Y → K̃:

(1) τ := τY :=
∑
θ/W

∑
φ∈Irr(Wθ)

1

fθ,φ
χθ,φ.
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Here, for any θ ∈ Irr(T ), fθ,φ ∈ Ã is the Schur element of the Hecke algebra H(Wθ,uθ)
indexed by φ as in Section 3.1.

Proposition 5.17. Assume that Wθ is a parabolic subgroup of W for all θ ∈ Irr(T ). As-
sume also that H(W,u) is strongly symmetric with respect to W ⊂ B as in Definition 3.4.
Then we have

τ(ytyw) = δt,1δw,1|T | for any t ∈ T , w ∈W.

Proof. For θ ∈ Irr(T ) let Cθ be a system of coset representatives of Wθ in W , and Cθ ⊆W

the corresponding system of coset representatives of T.B̃θ in T.B. Let θ ∈ Irr(T ) and
φ ∈ Irr(Wθ), and let U be a corresponding representation of H(Wθ,uθ) (which we consider

as a representation of B̂θ = TB̃θ as above). Let us set U0(x) := U(x) if x ∈ T.B̃θ and 0
otherwise. Then

Uθ,φ(ytyw) =
∑
x∈Cθ

U0((ytyw)x) =
∑

x∈Cθ,yxw∈B̃θ

θ(yxt )U(yxw),

so∑
φ∈Irr(Wθ)

1

fθ,φ
χθ,φ(ytyw) =

∑
x∈Cθ,yxw∈B̃θ

θ(yxt )
∑

φ∈Irr(Wθ)

1

fθ,φ
χθ,φ(yxw) =

∑
x∈Cθ,yxw∈B̃θ

θ(yxt )tWθ,uθ(y
x
w)

with tWθ,uθ as in Definition 3.4. By the choice of W we have

tWθ,uθ(y
x
w) = tW,u(yxw) = tW,u(yw) = δw,1.

Thus the form τ evaluates to

τ(ytyw) =
∑
θ/F

∑
x∈Cθ

θ(yxt )δw,1 =
∑

θ∈Irr(T)

θ(yt)δw,1 = δt,1δw,1|T |,

as desired. �

It seems natural to ask the following:

Question 5.18. Let (W,L) be a simply connected `-adic reflection group for which ` is

very good. Does the form |T |−1τ take values in Â and is it then a symmetrising form

on Y over Â?

Note that an affirmative answer to the first part of Question 5.18 follows under the
assumptions of Proposition 5.17.

5.5. Relation to classical Yokonuma algebras. Suppose that W is the Weyl group
with respect to a maximally split torus T0 of a connected reductive group G with an
Fq-structure defined by a split Frobenius map F : G→ G. Set G = GF and set T0 = TF

0 .
Let U be the unipotent radical of an F -stable Borel subgroup of G containing T0, and
let U = UF . Let ` be a prime dividing q − 1 and set eU = |U |−1

∑
u∈U u ∈ Z`G. Then

Y ′ := EndZ`G(Z`[G/U ]) = eUZ`GeU
is the associated classical Yokonuma Hecke algebra [38].

Let r1, . . . , rm be Coxeter generators of the Weyl group W . For t ∈ T0, let t′ = eU teU
and for each i, let Ei := E[T0,ri]eU , where for any subgroup A ≤ G we denote by EA the
sum of elements of A. By [20, Thm 2], Y ′ has a generating set {t′, si | t ∈ T0, 1 ≤ i ≤ m}
such that
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• the t′ satisfy the same relations as the corresponding group elements t;
• the action relations between the t, ri, with t replaced by t′ and ri by si hold in Y ′;
• the braid relations between the ri, with ri replaced by si hold in Y ′; and
• s2

i = 1− q−1(Ei − siEi).
Note that Juyumaya–Kannan work over the complex numbers but it can be checked from
the explicit description of the sis in terms of the standard generators coming from the
Bruhat decomposition, that the above holds over any ring in which q is invertible.

Proposition 5.19. Suppose that there is a W -equivariant isomorphism between T and
the Sylow `-subgroup of T0. Let H be the `′-Hall subgroup of T0, let eH = |H|−1EH be the

principal block idempotent of Z`T0 and set f = eHeU . Let ψq : Â→ Z` be the specialisation
corresponding to ur1 7→ −1, ur2 7→ q for all r. Then there is an isomorphism of Z`-algebras
Yψq ∼= fY ′f .

Proof. Note that f is an idempotent of Z`G. By considering the generating set of Y ′
described above, one sees that f is central in Y ′ and for any x ∈ H, xf = f , hence
{t′f, sif | t ∈ T0, 1 ≤ i ≤ m} is a generating set for Y ′f = fY ′f .

It follows from the description of Y via generators and relations given after Lemma 5.3
that there is a surjective Z`-algebra homomorphism Yψq → Y ′f which sends the image

ỹt ∈ Yψq of yt to q−1`a

q−1
t′f and ỹri to −sif . By Theorem 5.13, Yψq is Z`-free of rank

|TW | and the same is true for Y ′f . The last assertion can be seen by considering the
standard basis {eUneU | n ∈ NG(T0)} of Y ′ given by the Bruhat decomposition. Thus
Yψq is isomorphic to fY ′f as claimed. �

5.6. Proofs of Theorem 1 and Corollary 2. Throughout this subsection ` > 2 is
a prime, q is a prime power with q ≡ 1 (mod `) and a > 0 such that `a||(q − 1). Let
G = (W,L) be a simply connected Z`-spets with W an `′-group. Let F be the fusion
system associated to (W,L) as described in Section 4.1, with underlying `-group S. Recall
that with the stated assumptions we have S = T ∼= (Z/`a)n where T is the homocyclic
group L/`aL of exponent `a. We let Y be the Yokonuma algebra associated to (W,L, q)
as in Section 5.

Recall the indeterminates ũrj with ũzrj = ζ−jo(r)urj. By [27, Cor. 4.8], z may be chosen

to divide the order of the group of roots of unity in Q`, that is, `− 1. As `a||(q − 1), by
Hensel’s lemma there is a unique root of Xz−q ∈ Z`[X] in Z`, say q1/z, with `a||(q1/z−1).
Let Z` ⊆ O be a complete discrete valuation ring containing the |T |th roots of unity. Let

ψs,q : O[ũ±1]→ O, ũrj 7→

{
q

1
z if j = o(r),

1 if 1 ≤ j < o(r),

be the specialisation ψs,q from Section 3.2 with R = O. Since |Tr| divides `a, ψs,q extends

to an O-linear homomorphism O[ũ±1,v] → O which we still denote ψs,q. Let K̃ =
Frac(O[ũ±1]) and K = Frac(O).

We restate Theorem 1.

Theorem 5.20. Let G be as above. Suppose that H(W,u) is strongly symmetric as in
Definition 3.4. Then Conjectures 4.2, 4.3 and 4.5 hold for G.
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Proof. Let W0 be a reflection subgroup of W . By Lemma 3.7, K ⊗OHψs,q(W0,u0) is split

semisimple and ψs,q induces a bijection Irr(K̃ ⊗AH(W0,u0))→ Irr(K ⊗O Hψs,q(W0,u0)).

Also recall from Section 3.2, Irr(K̃⊗AH(W0,u0)) is identified with Irr(W0) via ψ1. Hence-
forth we identify Irr(K ⊗O Hψs,q(W0,u0)) and Irr(W0) via the bijections induced by ψs,q

and ψ1.
Denoting the restriction of ψs,q to Â again by ψs,q, set Yq := Yψs,q . Since W is an

`′-group, Wθ is a parabolic subgroup of W for all θ ∈ IrrK(T ). Then by Theorem 5.7(a)
and the above K ⊗O Yq is split semisimple and Irr(K ⊗O Yq) is in bijection with pairs
(θ, φ) as θ runs over representatives of W -orbits of Irr(T ) and φ ∈ Irr(Wθ). Let χ′θ,φ be
the irreducible character corresponding to the pair (θ, φ). Then χ′θ,φ is afforded by the

simple module U ′θ,φ := IndB̂
B̂θ

(U) for U a simple K⊗OHψs,q(Wθ,uθ)-module corresponding

to φ. Here as in Section 5.4, uθ = u0 in the notation of Section 3.1 if Wθ = W0.
We consider the following K-linear form on K ⊗O Yq:

(2) τq :=
1

|T |
∑
θ/W

∑
φ∈Irr(Wθ)

1

ψs,q(fθ,φ)
χ′θ,φ.

By Lemma 3.6 this is well defined. Since the coefficient of every irreducible character is
non zero, τq is a symmetrising form on K ⊗O Yψ with Schur elements |T |ψs,q(fθ,φ).

Let W ⊂ B(W ) be as in Definition 3.4. By Theorem 5.9, {ỹtỹw | t ∈ T, w ∈ W}
is an O-basis of Yq. Here, as earlier, for x ∈ Y , we write x̃ := 1O ⊗ x ∈ Yq. As in
Proposition 5.17, we have

τq(ỹtỹw) = δt,1δw,1 for any t ∈ T , w ∈W,

hence the above gives that the restriction of τq to Yq takes values in O.
By the strongly symmetric hypothesis, and by Theorem 5.10 there is an O-algebra

isomorphism σ : O[TW ] → Yq whose restriction to T is the identity on T (where we
identify T with its image in Yq via t 7→ ỹt, t ∈ T ). Denote also by σ the extension
K[TW ]→ K⊗O Yq. Then τσ := τq ◦σ : K[TW ]→ K is a symmetrising form on K[TW ],
with Schur element |T |ψs,q(fθ,φ) at the irreducible character of K[TW ] corresponding
under σ to the character χ′θ,φ of K ⊗O Yq. Further, by the above τσ(t) = δt,1 for all t ∈ T
and the restriction of τσ to O[TW ] takes values in O. Thus, by Lemmas 2.5 and 2.6,

1

|T |2
∑
θ/W

∑
φ∈Irr(Wθ)

1

ψs,q(f 2
θ,φ)

=
α

|TW |
,

where α ∈ O is such that α ≡ 1 (mod `).
Recall that S = T and as explained in Section 4.2, there exists a W -equivariant bijection

between Irr(T ) and T . Thus the left hand side of the above equals

ψs,q(d)

|T |2ψs,q(p2
W )

,

where d :=
∑

s/F
∑

φ∈Irr(W (s)) p
2
Wf
−2
s,φ . By Lemma 4.10, ψs,q(d) = dim(B0)|x=q. Since

ψs,q(pW ) ≡ |W | (mod `), we obtain the validity of Conjectures 4.2 and 4.3 from the
displayed equation above.
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Finally, we prove Conjecture 4.5. First of all note that since σ is the identity on T , for
any pair (θ, φ) as above the irreducible character of K[TW ] corresponding under σ to the

character χ′θ,φ of K ⊗O Yq covers θ and therefore is of the form γθ,φ̃ := IndWWθ
(φ̃) for some

φ̃ ∈ Irr(Wθ). In particular, σ induces a permutation φ 7→ φ̃ of Irr(Wθ). By Lemma 2.7
we have that for any ν ∈ IBr(TW ),∑

θ/W

∑
φ∈Irr(Wθ)

dγθ,φ̃ν

ψs,q(fθ,φ)

is divisible by |T | in O. Choose a W -equivariant bijection between Irr(T ) and T and

let Θ : Irr(TW ) → Irr(B0), γ 7→ γ̂, be the bijection such that if γ = IndWWθ
(φ̃), then

γ̂ is the element of Irr(B0) labelled by (x, φ), where the W -class of x ∈ T corresponds
to the W -class of θ for the chosen W -equivariant bijection between Irr(T ) and T . Then
Θ is W -equivariant. Moreover, by Lemma 4.10 the above displayed expression equals
ψs,q(pW )−1(deg Φν̂)|x=q. The result follows since ψs,q(pW ) is an invertible element ofO. �

Remark 5.21. The above holds in a more general setting. Drop the assumption that W
is spetsial; so W is an `-adic reflection group of order prime to `. Let ψq : O[ũ±1,v]→ O
be any specialisation as in Section 3.2. Suppose that τ : H(W,u)→ A is a symmetrising
form such that the following holds:

(1) there is a section W → W ⊂ B of the natural map B → W containing 1 whose
image in H(W,u) is an A-basis of H(W,u) with τ(hw) = δw,1 for all w ∈W; and

(2) for any parabolic subgroup W0 ≤ W , τ |H(W0,u0) : H(W0,u0)→ A is a symmetris-
ing form.

For s ∈ S, φ ∈ Irr(W (s)) let fτ,s,φ denote the Schur element of τ |H(W0,u0) with respect to
φ where W0 = W (s). Set

d :=
∑
s/F

∑
φ∈Irr(W (s))

p2
W

f 2
τ,s,φ

and for ν ∈ IBr(SW ) set

Φν(1) :=
∑

γ∈Irr(SW )

dγν
pW
fτ,s,φ

,

where dγν is the decomposition number in SW with respect to γ and ν. Then with the
same proof as above we get

(a) ψs,q(d)` = |S|;
(b) ψs,q(d)

ψs,q(pW ) |S| ≡ 1 (mod `); and

(c) for each ν ∈ IBr(SW ), |S| divides ψs,q(Φν(1)).

Proof of Corollary 2. By [26, §3] all imprimitive irreducible spetsial reflection groups are
either Coxeter groups, of type G(e, 1, n) or of type G(e, e, n) with n ≥ 3 and therefore
strongly symmetric by Proposition 3.5. Therefore Conjectures 1 and 2 hold for these
groups by Theorem 5.20. For the primitive groups, Conjecture 1 holds by Proposition 4.8.
Conjecture 2 holds when W is primitive and 2-dimensional by Proposition 3.5(c) and
Theorem 5.20; for G14 Conjecture 2 holds by direct computation using the description of
the decomposition matrix provided in the proof of Proposition 4.11. �
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