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Abstract. The Brieskorn lattice H ′′ of an isolated hypersurface
singularity with Milnor number µ is a free C{{s}}-module of rank
µ with a differential operator t = s2∂s. Based on the mixed Hodge
structure on the cohomology of the Milnor fibre, M. Saito con-
structed C{{s}}-bases of H ′′ for which the matrix of t has the form
A = A0 + A1s. We describe an algorithm to compute the matri-
ces A0 and A1. They determine the differential structure of the
Brieskorn lattice, the spectral pairs and Hodge numbers, and the
complex monodromy of the singularity.

1. The Milnor Fibration

Let f : (Cn+1, 0) −→ (C, 0) be a holomorphic function germ with
an isolated critical point and Milnor number µ = dimCC{x}/〈∂(f)〉
where x = x0, . . . , xn is a complex coordinate system of (Cn+1, 0) and
∂ = ∂x0 , . . . , ∂xn . By the finite determinacy theorem, we may assume
that f ∈ C[x]. By E.J.N Looijenga [7, 2.B], for a good representative
f : X −→ T where T ⊂ C is an open disk at the origin, the restriction
f : X ′ −→ T ′ to T ′ = T\{0} and X ′ = X\f−1(0) is a C∞ fibre bundle
unique up to diffeomorphism, the Milnor fibration. By J. Milnor [9,
6.5], the general fibre Xt = f−1(t), t ∈ T ′, is homotopy equivalent to
a bouquet of µ n-spheres and, in particular, its reduced cohomology

is H̃k(Xt) ∼= δk,nZ
µ where δ is the Kronecker symbol. Since T ′ is

locally contractible, the n-th cohomologies H(U) = Hn(XU) of XU =
f−1(U) form a locally free Z-sheaf of rank µ and HC = H ⊗Z C is a
complex local system of dimension µ. Hence, the sheaf of holomorphic
sections H = H ⊗Z OT ′ of HC is a locally free OT ′-sheaf of rank µ,
the cohomology bundle. By P. Deligne [4, 2.23], there is a natural flat
connection ∇ : H −→ H ⊗OT ′

Ω1
T ′ on H with sheaf of flat sections

H = ker(∇), the Gauss-Manin connection.

2. The Monodromy Representation

Let t be a complex coordinate of T ⊂ C, i : T ′ −→ T the canoni-
cal inclusion, and u : T∞ −→ T ′ the universal covering of T ′ defined
by u(τ) = exp(2πiτ) for a complex coordinate τ of T∞ ⊂ C. Then
the covariant derivative ∇∂t of ∇ along ∂t induces a differential op-
erator ∂t on i∗H and the pullback f∞ : X∞ = X ′ ×T ′ T∞ −→ T∞
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is a C∞ fibre bundle with X∞
τ = Xu(τ), the (canonical) Milnor fibre.

Since T∞ is contractible, the n-th cohomologies H(U) = Hn(X∞
U ) of

X∞
U = (f∞)−1(U) form a free Z-sheaf of rank µ and u∗H is the sheaf

of multivalued sections of H. Lifting closed paths in T ′ along sections
of H defines the monodromy representation π1(T

′, t) −→ Aut(Ht) on
Ht inducing the monodromy representation π1(T

′) −→ Aut(H) on the
cohomology H of the Milnor fibre. The image M of the counterclock-
wise generator of π1(T

′) is called the monodromy operator and fulfills
M(s)(τ) = s(τ + 1) for s ∈ H. The sheaf H is determined by the mon-
odromy representation up to isomorphism. The following well known
theorem is due to E. Brieskorn [2, 0.6] and others.

Theorem 1 (Monodromy Theorem). The eigenvalues of the mon-
odromy are roots of unity and its Jordan blocks have size at most
(n+ 1)× (n+ 1) and size at most n× n for eigenvalue 1.

3. The Gauss-Manin Connection

Let M = MsMu be the decomposition of M into semisimple part
Ms and unipotent part Mu and let N = − log Mu

2πi
be the nilpotent part

of M. Note that −2πiN ∈ EndQ(HQ) where HQ = H ⊗Z Q. Let
HC =

⊕
λH

λ
C be the decomposition of HC = H ⊗Z C into generalized

λ-eigenspaces Hλ
C of M and Mλ = M|Hλ

C
. Note that HQ = H1

Q ⊕ H
6=1
Q

where H1
Q ⊗Q C = H1

C and H 6=1
Q ⊗Q C =

⊕
λ6=1H

λ
C. Then there is an

inclusion

He−2πiα

C

ψα−→ (i∗H )0

defined by ψα(A) = tα+NA = tα exp(N log(t)) with image Cα = im(ψα).
In particular, the operators M and N act on Cα. The following lemma
is an immediate consequence of the definition of ψα.

Lemma 2.

(1) t ◦ ψα = ψα+1 and ∂t ◦ ψα = ψα−1 ◦ (α+ N).
(2) t : Cα −→ Cα+1 is bijective and ∂t : Cα −→ Cα−1 is bijective if

α 6= 0.
(3) On Cα, t∂t − α = N and exp(−2πit∂t) = Me−2πiα

.
(4) Cα = ker(t∂t − α)n+1.

Definition 3. We call G =
⊕

−1<α≤0C{t}[t−1]Cα ⊂ (i∗H )0 the local
Gauss-Manin connection.

The local Gauss-Manin connection is a µ-dimensional C{t}[t−1]-vectorspace
and a regular C{t}[∂t]-module. The generalized α-eigenspaces Cα of the
operator t∂t define the decreasing filtration on G by free C{t}-modules

V α =
⊕

α≤β<α+1

C{t}Cβ, V >α =
⊕

α<β≤α+1

C{t}Cβ
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of rank µ, the V-filtration. In contrast to the ψα and Cα, the V α are
independent of the coordinate t. The Cα define a splitting

Cα ∼= V α/V >α = grαVG

of the V-filtration and we denote by leadV the leading term with respect
to this splitting. The ring C{t} is a free module of rank 1 over the ring

C{{s}} =
{ ∞∑
k=0

aks
k ∈ C[[s]]

∣∣∣ ∞∑
k=0

ak
k!
tk ∈ C{t}

}
where s =

∫ 1

0
dt acts by integration. This fact is generalized by the

following lemma [13, 1.3.11].

Lemma 4. The action of s = ∂−1
t on V >−1 extends to a C{{s}}-module

structure and V >−1 is a free C{{s}}-module of rank µ.

Since [∂t, t] = 1, [t, s] = s2 and hence

t = s2∂s, ∂tt = s∂s.

We call a free C{{s}}-submodule of V >−1 of rank µ a C{{s}}-lattice
and call a t∂t-invariant C{{s}}-lattice saturated. A basis e of a C{{s}}-
lattice defines a matrix A =

∑
k≥0Aks

k of t by te = eA such that

t ∼= A+ s2∂s

is the basis representation of t.

4. The Brieskorn Lattice

The description of cohomology in terms of holomorphic differen-
tial forms by the de Rham isomorphism leads to the definition of the
Brieskorn lattice

H ′′ = Ωn+1
X,0 /df ∧ dΩn−1

X,0 .

By E. Brieskorn [2, 1.5] and M. Sebastiani [15], the Brieskorn lattice is
the stalk at 0 of a locally free OT -sheaf H ′′ of rank µ with H ′′|T ′ ∼= H
and hence H ′′ ⊂ (i∗H )0. The regularity of the Gauss-Manin connec-
tion proved by E. Brieskorn [2, 2.2] implies that H ′′ ⊂ G. B. Malgrange
[8, 4.5] improved this result by the following theorem.

Theorem 5. H ′′ ⊂ V −1.

By E. Brieskorn [2, 1.5], the Leray residue formula can be used to
express the action of ∂t in terms of differential forms by ∂t[df ∧ ω] =
[dω]. In particular, sH ′′ ⊂ H ′′ and

H ′′/sH ′′ ∼= Ωn+1
X,0 /df ∧ Ωn

X,0
∼= C{x}/〈∂(f)〉.

Since the V >−1 is a C{{s}}-module, theorem 5 implies that H ′′ is a free
C{{s}}-module of rank µ and the action of s can be expressed in terms
of differential forms by

s[dω] = [df ∧ ω].



4 MATHIAS SCHULZE

For computational purposes, we may restrict our attention to the com-
pletion of the Brieskorn lattice. E. Brieskorn [2, 3.4] proved the follow-
ing theorem.

Theorem 6. The mX,0- and mT,0-adic topologies on H ′′ coincide.

While the proof of theorem 6 is highly non-trivial, the analogous
statement for the C{{s}}-structure of the Brieskorn lattice is quite el-
ementary [13, 1.5.4].

Proposition 7. The mX,0- and mC{{s}}-adic topologies on H ′′ coincide.

We call the completion Ĥ ′′ of H ′′ the formal Brieskorn lattice. Since

completion is faithfully flat, Ĥ ′′ is a free C[[s]]-module of rank µ with
a differential operator t = s2∂s. The equality [∂(f)gdx] = s[∂(g)dx]
motivates to consider the differential relation ∂(f)− s∂. It is not diffi-
cult to prove that it defines the formal Brieskorn lattice as a quotient
of C[[s, x]] [13, 1.5.6].

Proposition 8.

C[[s, x]]
πH−→ C[[s, x]]/〈∂(f)− s∂〉C[[s, x]] ∼=C[[s]] Ĥ

′′.

Proposition 8 is the starting point for an algorithmic approach to
the local Gauss-Manin connection. Let <x be a local degree ordering
on C[[x]] such that deg(x) < 0 and deg(∂) = − deg(x) > 0. One can
compute a polynomial standard basis g of the Jacobian ideal 〈∂(f)〉 and

a polynomial transformation matrix B =
(
b
j)j

such that g = ∂(f)B.

By Nakayama’s lemma, m = (xβ)xβ /∈〈lead(g)〉 represents a C[[s]]-basis [m]

of Ĥ ′′. Let <s be the local degree ordering on C[[s]] and let <= (<s, <x)
be the block ordering of <s and <x on C[[s, x]].

Definition 9.

(1) h =
(
(gj − s∂b

j
)xβ

)
j,β

.

(2) deg(s) = min deg(m) + 2 min deg(x) < 0.
(3) N = (NK)K≥0 with NK = K deg(s)− 2 min deg(x).
(4) V = (VK)K≥0 with VK =

{
p ∈ C[[s, x]]

∣∣ deg(p) < NK

}
+ 〈s〉K ⊂

C[[s, x]].

Since Ĥ ′′ is a free C[[s]]-module, h is a standard basis of the C[[s]]-
module 〈∂(f) − s∂〉C[[s, x]]. The following lemma is technical but not
very deep and can be generalized to formal differential deformations
[13, 2.2.10].

Lemma 10. V = (VK)K≥0 is a basis of the 〈s, x〉-adic topology of

C[[s, x]] with πH(VK) = 〈s〉KĤ ′′. If sαlead(hj,β) ∈ VK then sαhj,β ∈ VK.

Lemma 10 leads to a normal form algorithm for the Brieskorn lattice
[13, 2.2.12]. It computes a normal form with respect to h and hence
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the [m]-basis representation in H ′′. The normal form computation up
to a given degree can be continued up to any higher degree without
additional computational effort. The normal form algorithm for the
Brieskorn lattice is a special case of a modification of Buchberger’s
normal form algorithm [3] for power series rings where termination is
replaced by adic convergence [13, 2.1.19].

5. Mixed Hodge Structure

By lemma 2, there is a C-isomorphism

HC =
⊕

−1<α≤0

He−2πiα

C

ψ−→
⊕

−1<α≤0

Cα ∼= V >−1/sV >−1

defined by ψ =
⊕

−1<α≤0 ψα and the monodromy M on HC corresponds
to exp(−2πit∂t) on

⊕
−1<α≤0C

α.

The Hodge filtration F = (Fk)k∈Z on V >−1 defined by J. Scherk and
J.H.M. Steenbrink [14] is the increasing filtration by the free C{{s}}-
modules

Fk = F n−k = (s−kH ′′) ∩ V >−1

of rank µ. Via the splitting Cα ∼= grαV V
>−1, the Hodge filtration induces

an increasing Hodge filtration FCα by C-vectorspaces on Cα and, via
ψ, on HC. The nilpotent operator −2πiN ∈ EndQ(HQ) defines an
increasing weight filtration W = (Wk)k∈Z centered at n resp. n+ 1 on

H 6=1
Q resp. H1

Q.

Theorem 11. The weight filtration W on HQ and the Hodge filtra-
tion F on HC define a mixed Hodge structure on the cohomology H
of the Milnor fibre and the operator N is a morphism of mixed Hodge
structures of type (−1,−1).

The mixed Hodge structure on the cohomology of the Milnor fibre
was discovered by J.H.M. Steenbrink [16] and described in terms of the
Brieskorn lattice by A.N. Varchenko [17].

The nilpotent operator N on Cα defines an increasing weight filtra-
tion W = (Wk)k∈Z centered at n on Cα. By definition N commutes
with ψα and hence

ψα
(
WHe−2πiα

C

)
=

{
WCα, α /∈ Z,
W [−1]Cα, α ∈ Z.

The weight filtration W =
⊕

−1<α≤0C{{s}}WCα on V >−1 by free

C{{s}}-modules induces WCα via the splitting Cα ∼= grαV V
>−1.

The spectral pairs are those pairs (α, l) ∈ Q× Z with positive mul-
tiplicity

dαl = dimC grWl grαV grF0 V
>−1.

Via the isomorphism ψ, they correspond to the Hodge numbers

hp,l−pλ = dimC grpFgrWl H
λ
C
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by dα+p
l = hn−p,l−n+p

e−2πiα for −1 < α < 0 and dpl = hn−p,l+1−n+p
1 and inherit

the symmetry properties

dαl = d2n−l−1−α
l , dαl = dα−n+l

2n−l , dαl = dn−1−α
2n−l

from the mixed Hodge structure. The spectral numbers are those num-
bers α ∈ Q with positive multiplicity

dα = dimC grαV grF0 V
>−1 =

∑
l∈Z

dαl

and have the symmetry property dα = dn−1−α.

6. M. Saito’s Basis

By P. Deligne [5, 1.2.8], a morphism of mixed Hodge structures is
strict for the Hodge filtration. In particular, by theorem 11, N is strict
for the Hodge filtration on HC and on grV V

>−1. Hence, there is a direct
sum decomposition FkC

α =
⊕

j≤k C
α,j such that N(Cα,k) ⊂ Cα,k+1,

and sCα,k ⊂ Cα+1,k−1. By definition of the Hodge filtration,

leadV (H ′′) =
∑
α∈Q

∑
k≤0

C{{s}}Cα,k =
⊕
α∈Q

C{{s}}Gα

where Gα = Cα,0. Let <Q×Z= (>Q, >Z) be the block ordering of
>Q and >Z on the index set Q × Z. Then the Hodge filtration de-
fines a refinement of the V-filtration on V >−1 by free C{{s}}-modules
V α,k = FkC

α ⊕ V >α of rank µ and the Cα,k define a splitting of this
refined filtration compatible with s. We call the refinement the Hodge
refinement and the splitting a Hodge splitting. The following lemma
follows essentially from the fact that C{{s}} is a discrete valuation ring
[13, 1.10.5,1.10.10].

Lemma 12. Let H be a C{{s}}-lattice and Cα,k a splitting of a refine-
ment of the V-filtration compatible with s. Then a minimal standard
basis of H is a C{{s}}-basis and there is a reduced minimal standard
basis of H.

In particular, there is a reduced minimal standard basis of H ′′ for
a Hodge splitting. The following proposition follows essentially from
lemma 2.3 [13, 1.10.12].

Proposition 13. Let h be a reduced minimal standard basis of H ′′ for
a Hodge splitting. Then the h-matrix A of t has degree 1. In particular,(

H ′′, t
) h←−

(
C{{s}}µ, A0 + A1s+ s2∂s

)
is an isomorphism. Moreover, A1 is semisimple with eigenvalues the
spectral numbers of f added by 1 and grV (A0) can be identified with N.
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Note that the matrices A0 and A1 in proposition 13 determine the
differential structure of the Brieskorn lattice. M. Saito [10] first con-
structed a C{{s}}-basis of H ′′ as in proposition 13 without calling it a
reduced minimal standard basis.

7. The Algorithm

We describe an algorithm to compute A0 and A1 as in proposition
13 [13]. This algorithm can be simplified to compute the complex
monodromy, the spectral numbers, or the spectral pairs only [13].

The normal form algorithm for the Brieskorn lattice in section 4
computes the [m]-matrix A =

∑
k≥0Aks

k of t defined by t[m] = [fm] =
[m]A up to any degree. We identify the columns of a matrix H with
the generators of a submodule 〈H〉 ⊂ C[[s]]µ and denote by E the unit

matrix. Then 〈E〉 is the [m]-basis representation of Ĥ ′′. Hence, the
following two statements hold for h = [m] with κ = 0 and H = E.

(Hh) One can compute κ ≥ 0 and a µ × µ-matrix H with coeffi-
cients in C[s] of degree at most κ such that 〈H〉 is the h-basis

representation of Ĥ ′′ and sκ〈E〉 ⊂ 〈H〉.
(Ah) One can compute the h-matrix A of t up to any degree.

Step by step, we improve the C[[s]]-basis h and show that (Hh) and
(Ah) hold. After the last step, A0 and A1 as in proposition 13 can
be computed by a basis transformation of A to a reduced minimal
standard basis of 〈H〉 up to a certain degree bound.

We call the canonical projection jetk : C[[s]] −→
⊕k

j=0Cs
j the k-

jet. Let the monomial ordering on C[[s]]µ = C[[s]] ⊗C Cµ be the block
ordering <= (<s, >µ) of the local degree ordering <s on C[[s]] and the
inverse ordering >µ on the indices of the basis elements of Cµ.

7.1. The Saturation of H ′′. In this step, we show that (Hh) and (Ah)
hold for a C[[s]]-basis h of a saturated C[[s]]-lattice.

The increasing sequence of C[[s]]-lattices defined by

Ĥ ′′
0 = Ĥ ′′, Ĥ ′′

k+1 = sĤ ′′
k + tĤ ′′

k ⊂ Ĥ ′′

is stationary since Ĥ ′′ is noetherian. Hence, the saturation Ĥ ′′
∞ =⋃

k≥0 Ĥ
′′
k of Ĥ ′′ is a saturated C[[s]]-lattice. The [m]-basis representation

〈Hk〉 of Ĥ ′′
k can be computed by

H0 = Q−1 = E, Qk =
(
jetk(A) + s2∂s

)
Qk−1, Hk+1 = (sHk|Qk).

We successively compute the Hk and check in each step if 〈Qk〉 ⊂ 〈Hk〉
by a standard basis and normal form computation. If 〈Qk〉 ⊂ 〈Hk〉
then we stop the computation and set κ = k and H∞ = Hκ. Then

〈H∞〉 is the [m]-basis representation of Ĥ ′′
∞. We replace H∞ by a

minimal standard basis of 〈H∞〉. Then h = s−κhH∞ is a C[[s]]-basis of
a saturated C[[s]]-lattice. By a normal form computation with respect to
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H∞ up to degree κ, we compute the h-basis representation 〈H−1
∞ sκE〉 =

〈jetκ(H−1
∞ sκE)〉 of Ĥ ′′. Since 〈H∞〉 ⊂ 〈E〉, sκ〈E〉 ⊂ 〈H−1

∞ sκE〉. By a
normal form computation with respect to H∞ up to degree κ+ k, one
can compute the k-jet

jetk
(
H−1
∞ (A−κsE+s2∂s)H∞

)
= jetk

(
H−1
∞

(
jetκ+k(A−κsE)+s2∂s

)
H∞

)
of the h-matrix of t for any k ≥ 0.

7.2. The V-Filtration. In this step, we show that (Hv) and (Av) hold

for a <Q-increasingly ordered C[[s]]-basis v of a V̂ α compatible with the

direct sum decomposition V̂ α/sV̂ α ∼=
⊕

α≤β<α+1C
β.

Since h is a C[[s]]-basis of a saturated C{{s}}-lattice, A0 = 0 and, by
theorem 1, the eigenvalues of A1 are rational. In order to compute the
eigenvalues of A1, we transform A1 to Hessenberg form and factorize
the characteristic polynomials of its blocks. Then we compute a con-
stant C[[s]]-basis transformation such that A1 = diag(α1, . . . , αµ) + N
with α1 ≤ · · · ≤ αµ where diag(α1, . . . , αµ) denotes the diagonal matrix
with entries α1, . . . , αµ. If αµ−α1 < 1 then v = h is a <Q-increasingly

ordered C[[s]]-basis v of a V̂ α compatible with the direct sum decom-

position V̂ α/sV̂ α ∼=
⊕

α≤β<α+1C
β. If αµ − α1 ≥ 1 then we proceed as

follows. Let

A =

(
A1,1 A1,2

A2,1 A2,2

)
such that A0 = 0, A1,2

1 = 0, A2,1
1 = 0, and the eigenvalues of A1,1

1 are
the eigenvalues α of A1 with α < α1 + 1. Then the C[[s]][s−1]-basis
transformation

H 7→
(

1
s 0
0 1

)
H, A 7→

(
1
s 0
0 1

) (
A + s2∂s

) (
s 0
0 1

)
=

(
A1,1 + s 1

sA
1,2

sA2,1 A2,2

)
decreases αµ−α1 and the degree up to which A is computed by 1 and
increases κ by 1. After at most n such transformations, αµ − α1 < 1.

7.3. The Canonical V-Splitting. In this step, we show that (Hc)
and (Ac) hold for a <Q-increasingly ordered C-basis c of a direct sum⊕

α≤β<α+1C
β compatible with the direct sum.

Let c be the image of [v] under the splitting V̂ α/sV̂ α ∼=
⊕

α≤β<α+1C
β.

By Nakayama’s lemma, c is a C-basis of
⊕

α≤β<α+1C
β compatible with

the direct sum. The eigenvalues of the commutator [·, A1] ∈ EndC(Cµ
2
)

are the differences of the eigenvalues of A1. Since αµ − α1 < 1,
[·, A1] − k ∈ GLµ2(C) for k ≥ 1. Let U =

∑∞
j=0 Ujs

j be the C[[s]]-
basis transformation defined by c = vU . Then U0 = E and UA1s =
(A+ s2∂s)U or equivalently

Uk =
(
[·, A1]− k

)−1
k−1∑
j=0

Ak−j+1Uj
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for k ≥ 1 and hence one can compute U up to any degree. Since U0 = E
and κ ≥ 0, jetκ(U) is a minimal standard basis of 〈E〉. By a normal
form computation with respect to U up to degree κ, we compute the

c-basis representation 〈U−1H〉 = 〈jetκ(jetκ(U)−1H)〉 of Ĥ ′′ and A1s is
the c-matrix of t.

7.4. A Hodge Splitting.
In this step, we show that (Hf ) and (Af ) hold for a <Q×Z-decreasingly

ordered C-basis f of a direct sum
⊕

α≤β<α+1

⊕
k∈ZC

β,k compatible
with the direct sum and that one can compute A0 and A1 as in propo-
sition 13.

We compute a standard basis of H up to degree κ in order to com-
pute the c-basis representation of the Hodge filtration F . The nilpotent
part of A1 is the c-basis representation of N. By computing images and
quotients of C-vectorspaces, we compute the c-basis representation of a
Hodge splitting FkC

β =
⊕

j≤k C
β,j. Then we compute a constant C[[s]]-

basis transformation f = cU such that f is a <Q×Z-decreasingly or-

dered C-basis of the direct sum
⊕

α≤β<α+1

⊕
k∈ZC

β,k compatible with
the direct sum.

We replace H by a reduced minimal standard basis of 〈H〉 up to
degree κ+ 1. By a normal form computation with respect to H up to
degree κ+ 1, we compute the 1-jet

jet1

(
H−1(A+s2∂s)H

)
= jet1

(
jetκ+1(H)−1

(
jetκ+1(A)+s2∂s

)
jetκ+1(H)

)
of the cH-matrix A of t in order to compute A0 and A1 as in proposition
10.

8. An Example

The algorithm in section 7 is implemented in the computer alge-
bra system Singular [6] in the procedure tmatrix in the library
gaussman.lib [12]. In an example Singular session, we compute
the differential structure of the Brieskorn lattice of the singularity of
type T2,5,5 defined by the polynomial f = x2y2 + x5 + y5.

First, we load the Singular library gaussman.lib:

> LIB "gaussman.lib";

Then, we define the local ring R = Q[x, y]〈x,y〉 with the local degree
ordering ds as monomial ordering and the polynomial f = x2y2 + x5 +
y5 ∈ R:

> ring R=0,(x,y),ds;
> poly f=x2y2+x5+y5;

Finally, we compute A0 and A1 as in proposition 10:

> list A=tmatrix(f);
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The result is the list A=A[1],A[2] such that A[i + 1] = Ai and

A0 =


0 0 · · · 0
...

...
...

0 0 · · · 0
1 0 · · · 0

 , A1 = diag
(1

2
,

7
10

,
7
10

,
9
10

,
9
10

, 1,
11
10

,
11
10

,
13
10

,
13
10

,
3
2

)
.

By proposition 10,
(
H ′′, t

) ∼= (
C{{s}}µ, A0 + sA1 + s2∂s

)
and the

spectral pairs are
(
−1

2
, 2

)
,
(
− 3

10
, 1

)2
,
(
− 1

10
, 1

)2
, (0, 1),

(
1
10
, 1

)2
,
(

3
10
, 1

)2
,(

1
2
, 0

)
.

References

[1] V.I. Arnold, S.M. Gusein-Zade, and A.N. Varchenko. Singularities of Differ-
entiable Maps, volume II. Birkhäuser, 1988.

[2] E. Brieskorn. Die Monodromie der isolierten Singularitäten von Hyperflächen.
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