THE DIFFERENTIAL STRUCTURE OF THE
BRIESKORN LATTICE
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ABSTRACT. The Brieskorn lattice H” of an isolated hypersurface
singularity with Milnor number y is a free C{{s}}-module of rank
p with a differential operator ¢t = s20,. Based on the mixed Hodge
structure on the cohomology of the Milnor fibre, M. Saito con-
structed C{{s}}-bases of H"” for which the matrix of ¢ has the form
A = Ag 4+ Ays. We describe an algorithm to compute the matri-
ces Ag and A;. They determine the differential structure of the
Brieskorn lattice, the spectral pairs and Hodge numbers, and the
complex monodromy of the singularity.

1. THE MILNOR FIBRATION

Let f : (C"10) — (C,0) be a holomorphic function germ with
an isolated critical point and Milnor number p = dim¢ C{z}/((f))
where z = g, ..., T, is a complex coordinate system of (C"*1, 0) and
0 = Opyy...,0z,. By the finite determinacy theorem, we may assume
that f € C[z]. By E.J.N Looijenga [7, 2.B], for a good representative
f X — T where T' C C is an open disk at the origin, the restriction
f: X — T toT' =T\{0} and X' = X\ f71(0) is a € fibre bundle
unique up to diffeomorphism, the Milnor fibration. By J. Milnor [9,
6.5], the general fibre X; = f~1(¢), t € T', is homotopy equivalent to
a bouquet of y n-spheres and, in particular, its reduced cohomology
is H*(X;) = 0p,Z"* where § is the Kronecker symbol. Since 1" is
locally contractible, the n-th cohomologies H(U) = H"(Xy) of Xy =
f7HU) form a locally free Z-sheaf of rank p and Hg = H®z C is a
complex local system of dimension p. Hence, the sheaf of holomorphic
sections ¢ = H ®yz O of He is a locally free &p-sheaf of rank pu,
the cohomology bundle. By P. Deligne [4, 2.23], there is a natural flat
connection V : J#° —  ®g,, QL, on # with sheaf of flat sections
H = ker(V), the Gauss-Manin connection.

2. THE MONODROMY REPRESENTATION

Let t be a complex coordinate of T C C, i : 7" — T the canoni-
cal inclusion, and u : T°° — T’ the universal covering of 7" defined
by u(r) = exp(2wir) for a complex coordinate 7 of 7 C C. Then
the covariant derivative Vg, of V along 0; induces a differential op-
erator 0; on 7,77 and the pullback f* : X*®° = X' xp T — T
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is a € fibre bundle with X>° = X,;), the (canonical) Milnor fibre.
Since T is contractible, the n-th cohomologies H(U) = H"(Xg°) of
X = (f>°)"Y(U) form a free Z-sheaf of rank p and u,H is the sheaf
of multivalued sections of H. Lifting closed paths in 7" along sections
of H defines the monodromy representation m1(7”,t) — Aut(H;) on
H; inducing the monodromy representation m(7") — Aut(H) on the
cohomology H of the Milnor fibre. The image M of the counterclock-
wise generator of 71(7") is called the monodromy operator and fulfills
M(s)(r) = s(t + 1) for s € H. The sheaf H is determined by the mon-
odromy representation up to isomorphism. The following well known
theorem is due to E. Brieskorn [2, 0.6] and others.

Theorem 1 (Monodromy Theorem). The eigenvalues of the mon-
odromy are roots of unity and its Jordan blocks have size at most
(n+1) x (n+ 1) and size at most n X n for eigenvalue 1.

3. THE GAUSS-MANIN CONNECTION

Let M = MM, be the decomposition of M into semisimple part
M; and unipotent part M, and let N = —% be the nilpotent part
of M. Note that —27iN € Endq(Hq) where Hg = H ®z Q. Let
He = @, HY be the decomposition of He = H ®7 C into generalized
A-eigenspaces Hg of M and M* = M|py. Note that Heq = Hy @ Hgl
where Hy ®q C = H¢ and Hgl ®q C = Dy HY. Then there is an
inclusion

qu:727ria & (Z*%)O
defined by 1, (A) = t*™A = t* exp(N log(t)) with image C* = im(1),).
In particular, the operators M and N act on C“. The following lemma
is an immediate consequence of the definition of .

Lemma 2.
(1) t ot = Yay1 and Oy 0 Yo = Pa_1 0 (@ + N).
(2) t: C* — C*M is bijective and 9, : C* — C*! is bijective if
a#0. A
(3) On C°, td, — a = N and exp(—2mitd,) = M ™.
(4) C* =ker(td; — o)™t

Definition 3. We call G = @ _,_,, C{t}[t']|C* C (i..%)o the local

Gauss-Manin connection.

The local Gauss-Manin connection is a p-dimensional C{¢}[t~!|-vectorspace
and a regular C{¢}[0;]-module. The generalized a-cigenspaces C* of the
operator t0; define the decreasing filtration on G by free C{t}-modules

ve= @ c{yet, vr= P oc{e’

a<f<a+l a<f<a+1
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of rank p, the V-filtration. In contrast to the i, and C'*, the V* are
independent of the coordinate t. The C'* define a splitting

C2VVZY =gl G

of the V-filtration and we denote by leady the leading term with respect
to this splitting. The ring C{t¢} is a free module of rank 1 over the ring

C{{s)) = {Zaksk e C[s]

o0

Ht € C{t}}
k=0

where s = fol dt acts by integration. This fact is generalized by the
following lemma [13, 1.3.11].

Lemma 4. The action of s = 9; " on V>"1 extends to a C{{s}}-module
structure and V="' is a free C{{s}}-module of rank p.

Since [0, t] = 1, [t, s] = s* and hence
t = 5205, Oyt = s0;.
We call a free C{{s}}-submodule of V>~! of rank p a C{{s}}-lattice
and call a t0;-invariant C{{s}}-lattice saturated. A basis e of a C{{s}}-
lattice defines a matrix A = Zkzo Aps® of t by te = eA such that
t = A+ s%0,

is the basis representation of ¢.

4. THE BRIESKORN LATTICE

The description of cohomology in terms of holomorphic differen-
tial forms by the de Rham isomorphism leads to the definition of the
Brieskorn lattice

H" = Qi /df AdQ .
By E. Brieskorn [2, 1.5] and M. Sebastiani [15], the Brieskorn lattice is
the stalk at 0 of a locally free Op-sheaf 5" of rank u with 2" | = A
and hence H"” C (i,.7)o. The regularity of the Gauss-Manin connec-
tion proved by E. Brieskorn [2, 2.2] implies that H” C G. B. Malgrange
8, 4.5] improved this result by the following theorem.

Theorem 5. H' c V1.

By E. Brieskorn [2, 1.5], the Leray residue formula can be used to
express the action of d; in terms of differential forms by 0;[df A w] =
[dw]. In particular, sH” C H"” and

H"[sH" = Q%5 /df A Q% o = C{z}/(0(f)).

Since the V=71 is a C{{s}}-module, theorem 5 implies that H” is a free
C{{s}}-module of rank p and the action of s can be expressed in terms
of differential forms by

sldw] = [df Aw].
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For computational purposes, we may restrict our attention to the com-
pletion of the Brieskorn lattice. E. Brieskorn [2, 3.4] proved the follow-
ing theorem.

Theorem 6. The mxo- and myp-adic topologies on H" coincide.

While the proof of theorem 6 is highly non-trivial, the analogous
statement for the C{{s}}-structure of the Brieskorn lattice is quite el-
ementary [13, 1.5.4].

Proposition 7. The mx - and megsy-adic topologies on H" coincide.

We call the completion H" of H" the formal Brieskorn lattice. Since
completion is faithfully flat, H" is a free C[s]-module of rank p with
a differential operator t = s29,. The equality [9(f)gdz] = s[0(g)dz]
motivates to consider the differential relation 9(f) — s0. It is not diffi-
cult to prove that it defines the formal Brieskorn lattice as a quotient
of Cl[s,z] [13, 1.5.6].

Proposition 8.
Cls, z] ™ C[s,2]/{0(f) — s9)C[s, 2] Zepq H".

Proposition 8 is the starting point for an algorithmic approach to
the local Gauss-Manin connection. Let <, be a local degree ordering
on C[z] such that deg(z) < 0 and deg(d) = —deg(z) > 0. One can
compute a polynomial standard basis g of the Jacobian ideal (J(f)) and
a polynomial transformation matrix B = (Z_)j)] such that g = 9(f)B.
By Nakayama’s lemma, m = (gﬁ)zg ¢(lead(g)) TePTesents a C[s]-basis [m]
of H". Let <, be the local degree ordering on C[s] and let <= (<,, <,)
be the block ordering of <4 and <, on C[s, z].

Definition 9.

(1) b= ((9; = s9¥)2?) .

(2) deg(s) = mindeg(m) + 2mindeg(z) < 0.

(3) N = (Nk)g>o with Ng = K deg(s) — 2mindeg(z).

(4) (Vi) ko with Vi = {p € C[s, z]| deg(p) < Nk} + (s)¥

V=
Cls, z]-

Since H” is a free C[s]-module, h is a standard basis of the C[s]-
module (9(f) — s0)C[s,z]. The following lemma is technical but not

very deep and can be generalized to formal differential deformations
(13, 2.2.10].

Lemma 10. V = (Vk)k>o is a basis of the (s,z)-adic topology of
Cls, z] with 7y (Vi) = (s)* H". If s*lead(h; ) € Vi then s*h;z € Vi.

Lemma 10 leads to a normal form algorithm for the Brieskorn lattice
[13, 2.2.12]. It computes a normal form with respect to h and hence
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the [m]-basis representation in H”. The normal form computation up
to a given degree can be continued up to any higher degree without
additional computational effort. The normal form algorithm for the
Brieskorn lattice is a special case of a modification of Buchberger’s
normal form algorithm [3] for power series rings where termination is
replaced by adic convergence [13, 2.1.19].

5. MIXED HODGE STRUCTURE

By lemma 2, there is a C-isomorphism

He= @ H™ -5 P co=visy
—1<a<0 —1<a<0
defined by ¢ = @ _,_, (¥ and the monodromy M on H¢ corresponds
to exp(—27itd;) on P _,_ o C*.

The Hodge filtration F' = (F})rez on V="' defined by J. Scherk and
J.H.M. Steenbrink [14] is the increasing filtration by the free C{{s}}-
modules

Fk — ank — (kaH//) N V>71
of rank p. Via the splitting C* = gr®V>~! the Hodge filtration induces
an increasing Hodge filtration F'C* by C-vectorspaces on C“ and, via
¢, on Hg. The nilpotent operator —27iN € Endg(Hg) defines an
increasing weight filtration W = (Wy,)rez centered at n resp. n+ 1 on
Hgl resp. Hy,.

Theorem 11. The weight filtration W on Hg and the Hodge filtra-
tion F' on Hg define a mized Hodge structure on the cohomology H
of the Milnor fibre and the operator N is a morphism of mized Hodge
structures of type (—1,—1).

The mixed Hodge structure on the cohomology of the Milnor fibre
was discovered by J.H.M. Steenbrink [16] and described in terms of the
Brieskorn lattice by A.N. Varchenko [17].

The nilpotent operator N on C* defines an increasing weight filtra-
tion W = (Wy)rez centered at n on C*. By definition N commutes

with ¢, and hence
woe, aé¢Z,

%w”%):{WPMW,aGZ

The weight filtration W = @ _,_,., C{sPWC* on V>~ by free
C{{s}}-modules induces WC* via the splitting C* = gryV>"1,
The spectral pairs are those pairs («,1) € Q x Z with positive mul-
tiplicity
d? = dimg gr)¥ grigri Vo1
Via the isomorphism 1, they correspond to the Hodge numbers

pl=p _ 1; P oW A
hy" = dimg grpgr;” He
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by di P = b for —1 < o < 0 and @ = A} and inherit
the symmetry properties

oa _ 12n—l-1—-«a o joa—n+l n—1—«a
dl - dl ) dl _dQn—l ) d d2n l

from the mixed Hodge structure. The spectral numbers are those num-
bers a € Q with positive multiplicity

d* = dimg gréeri V=1 Z dy*

IEZ

and have the symmetry property d® = d"~ 1=,

6. M. SAITO’S BASIS

By P. Deligne [5, 1.2.8], a morphism of mixed Hodge structures is
strict for the Hodge filtration. In particular, by theorem 11, N is strict
for the Hodge filtration on Hg and on gry, V> ~1. Hence, there is a direct
sum decomposition FrC* = @, , C*7 such that N(C**) C O,
and sC*F c Co*tbk=1 By definition of the Hodge filtration,

leady (H") =Y Y C{{s}C™* = P C{s}G°

a€eQ k<0 acQ

where G* = C*°. Let <qxz= (>q,>z) be the block ordering of
>q and >z on the index set Q x Z. Then the Hodge filtration de-
fines a refinement of the V-filtration on V>~! by free C{{s}}-modules
Vek = [,C* @ V> of rank u and the C** define a splitting of this
refined filtration compatible with s. We call the refinement the Hodge
refinement and the splitting a Hodge splitting. The following lemma
follows essentially from the fact that C{{s}} is a discrete valuation ring
13, 1.10.5,1.10.10).

Lemma 12. Let H be a C{{s}}-lattice and C** a splitting of a refine-
ment of the V-filtration compatible with s. Then a minimal standard

basis of H is a C{{s}}-basis and there is a reduced minimal standard
basis of H.

In particular, there is a reduced minimal standard basis of H” for
a Hodge splitting. The following proposition follows essentially from
lemma 2.3 [13, 1.10.12].

Proposition 13. Let h be a reduced minimal standard basis of H" for
a Hodge splitting. Then the h-matriz A of t has degree 1. In particular,

(H" 1) < (C{{sP", Ao + Ays + 5°0,)

1s an isomorphism. Moreover, Ay is semisimple with eigenvalues the
spectral numbers of f added by 1 and gr,,(Ag) can be identified with N.
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Note that the matrices Ag and A; in proposition 13 determine the
differential structure of the Brieskorn lattice. M. Saito [10] first con-
structed a C{{s}}-basis of H” as in proposition 13 without calling it a
reduced minimal standard basis.

7. THE ALGORITHM

We describe an algorithm to compute Ay and A; as in proposition
13 [13]. This algorithm can be simplified to compute the complex
monodromy, the spectral numbers, or the spectral pairs only [13].

The normal form algorithm for the Brieskorn lattice in section 4
computes the [m]-matrix A = >, . Aps* of t defined by t[m] = [fm] =
[m]A up to any degree. We identify the columns of a matrix H with
the generators of a submodule (H) C C[s]* and denote by E the unit
matrix. Then (E) is the [m]-basis representation of H”. Hence, the
following two statements hold for h = [m]| with xk =0 and H = E.

(Hp) One can compute £ > 0 and a p x p-matrix H with coeffi-

cients in C[s] of degree at most x such that (H) is the h-basis
representation of H” and s*(E) C (H).

(Ap) One can compute the h-matrix A of ¢ up to any degree.

Step by step, we improve the C[s]-basis h and show that (Hj) and
(Ap) hold. After the last step, Ag and A; as in proposition 13 can
be computed by a basis transformation of A to a reduced minimal
standard basis of (H) up to a certain degree bound.

We call the canonical projection jet, : C[s] — @f:o Cs’ the k-
jet. Let the monomial ordering on C[s]* = C[s] ®¢ C" be the block
ordering <= (<, >,) of the local degree ordering <, on C[s] and the
inverse ordering >, on the indices of the basis elements of CH.

7.1. The Saturation of H”. In this step, we show that (H}) and (Ay)
hold for a C[s]-basis h of a saturated C[s]-lattice.
The increasing sequence of C[s]-lattices defined by

By = A", A, = B+ tA C A"

is stationary since H" is noetherian. Hence, the saturation f]c’; =
Usso Hy of H" is a saturated C[s]-lattice. The [m]-basis representation

(Hy) of ]?I,’g' can be computed by

Hy=Q1=E, Qi= (jety(A)+5°0.)Qr-1, Hirr = (sHilQx).

We successively compute the Hj, and check in each step if (Qx) C (Hy)
by a standard basis and normal form computation. If (Qx) C (Hy)
then we stop the computation and set s = k and Hy,, = H.. Then
(Hy) is the [m]-basis representation of H” . We replace Hy, by a
minimal standard basis of (Hy). Then h = s "hH, is a C[s]-basis of
a saturated C[s]-lattice. By a normal form computation with respect to
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H, up to degree x, we compute the h-basis representation (H 's"E) =
(jet,(HZ's"E)) of H". Since (Hy) C (E), s*(E) C (HZ's*E). By a
normal form computation with respect to H,, up to degree x + k, one
can compute the k-jet

jety (H (A—ksE+5%0,)Hyo) = jety, (Hy' (jet, iy (A—KSE)+50,) Hoo )
of the h-matrix of ¢ for any k& > 0.

7.2. The V-Filtration. In this step, we show that (H,) and (A4,) hold
for a <q-increasingly ordered C[s]-basis v of a Ve compatible with the
direct sum decomposition V/sV® Do<scars Ch.

Since h is a C[s]-basis of a saturated C{{s}}-lattice, Ay = 0 and, by
theorem 1, the eigenvalues of A; are rational. In order to compute the
eigenvalues of A;, we transform A; to Hessenberg form and factorize
the characteristic polynomials of its blocks. Then we compute a con-
stant C[s]-basis transformation such that A; = diag(oy,...,o,) + N
with oy < -+ <, where diag(o, ..., o) denotes the diagonal matrix
with entries aq,...,a,. If oy —ay <1 then v = h is a <qg-increasingly
ordered C[[s]-basis v of a V* compatible with the direct sum decom-
position \A/a/sf/a = @a§5<a+1 CP. If a,, — oy > 1 then we proceed as

follows. Let
Al,l A1’2
A= A21 422
such that Ay = 0, A} = 0, AP' = 0, and the eigenvalues of A} are

the eigenvalues a of A; with @ < «a; + 1. Then the C[s][s~!]-basis
transformation

10 10 2 s 0) _ [(Ab4+s 1412
HH(O 1>H’ AH(O 1>(A+Sas)(0 1>_<5A2»1 A“)

decreases o, — a; and the degree up to which A is computed by 1 and
increases x by 1. After at most n such transformations, o, — oy < 1.

7.3. The Canonical V-Splitting. In this step, we show that (H.)
and (A.) hold for a <g-increasingly ordered C-basis ¢ of a direct sum
Do<pear C? compatible with the direct sum.

Let ¢ be the image of [v] under the splitting V' /sV® 2 Do<scars Ch.
a<f<atl C? compatible with
the direct sum. The eigenvalues of the commutator [-, 4] € Endg(C*)
are the differences of the eigenvalues of A;. Since o, — oy < 1,
[ A1) =k € GL,2(C) for k > 1. Let U = 3222 U;s? be the C[s]-
basis transformation defined by ¢ = vU. Then Uy = E and UA;s =
(A + s20,)U or equivalently

By Nakayama’s lemma, c is a C-basis of @@

k—1
Ue = ([ A = &) AU
§=0
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for £ > 1 and hence one can compute U up to any degree. Since Uy = £
and k > 0, jet,(U) is a minimal standard basis of (£). By a normal
form computation with respect to U up to degree k, we compute the
c-basis representation (U~'H) = (jet, (jet,.(U)"1H)) of H” and A;s is
the c-matrix of t.

7.4. A Hodge Splitting.
In this step, we show that (Hy) and (Ay) hold for a <qxz-decreasingly

ordered C-basis f of a direct sum ,<s.0 11 Drez CP* compatible
with the direct sum and that one can compute Ay and A; as in propo-
sition 13.

We compute a standard basis of H up to degree k in order to com-
pute the c-basis representation of the Hodge filtration F'. The nilpotent
part of A; is the c-basis representation of N. By computing images and
quotients of C-vectorspaces, we compute the c-basis representation of a
Hodge splitting F,CP = D, CP3. Then we compute a constant C[s]-
basis transformation f = cU such that f is a <qxz-decreasingly or-

dered C-basis of the direct sum @a<ﬁ<a+1 Dz CP* compatible with
the direct sum.

We replace H by a reduced minimal standard basis of (H) up to
degree xk + 1. By a normal form computation with respect to H up to
degree k + 1, we compute the 1-jet

jety (H_I(A + 8285)1']) = jet, (jetf_ﬁl(_f-_f)_1 (jet,ﬁl(A) + 8288)jet,i+1(H))

of the cH-matrix A of ¢ in order to compute Ay and A; as in proposition
10.

8. AN EXAMPLE

The algorithm in section 7 is implemented in the computer alge-
bra system SINGULAR [6] in the procedure tmatrix in the library
gaussman.lib [12]. In an example SINGULAR session, we compute
the differential structure of the Brieskorn lattice of the singularity of
type Ty 55 defined by the polynomial f = x?y? + 2° + 3.

First, we load the SINGULAR library gaussman.lib:
> LIB "gaussman.lib";

Then, we define the local ring R = Q[x, y (s, With the local degree
ordering ds as monomial ordering and the polynomial f = 22y 4 2° +
y® € R:
> ring R=0, (x,y),ds;
> poly f=x2y2+xb5+y5;

Finally, we compute Ay and A; as in proposition 10:

> list A=tmatrix(f);
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The result is the list A=A[1],A[2] such that A[i + 1] = A; and

Do : 1 7 7 9 9 11 11 13 13 3
AO: - 1, Al_diag<777773777a1a777777777)
00 - 0 210°10°10°10° " 10° 10’ 10° 10’ 2

By proposition 10, (H”,t) = (C{s}}*, Ay + s4; + s?0,) and the

spectral pairs are (—%,2), (—%, 1)2, (—%, 1)2, (0,1), (lio, 1)2, (1%, 1)2,
(3.0)-
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