THE DIFFERENTIAL STRUCTURE OF THE BRIESKORN LATTICE

MATHIAS SCHULZE

Abstract

The Brieskorn lattice $H^{\prime \prime}$ of an isolated hypersurface singularity with Milnor number μ is a free $\mathbb{C}\{\{s\}\}$-module of rank μ with a differential operator $t=s^{2} \partial_{s}$. Based on the mixed Hodge structure on the cohomology of the Milnor fibre, M. Saito constructed $\mathbb{C}\{\{s\}\}$-bases of $H^{\prime \prime}$ for which the matrix of t has the form $A=A_{0}+A_{1} s$. We describe an algorithm to compute the matrices A_{0} and A_{1}. They determine the differential structure of the Brieskorn lattice, the spectral pairs and Hodge numbers, and the complex monodromy of the singularity.

1. The Milnor Fibration

Let $f:\left(\mathbb{C}^{n+1}, \underline{0}\right) \longrightarrow(\mathbb{C}, 0)$ be a holomorphic function germ with an isolated critical point and Milnor number $\mu=\operatorname{dim}_{\mathbb{C}} \mathbb{C}\{\underline{x}\} /\langle\underline{\partial}(f)\rangle$ where $\underline{x}=x_{0}, \ldots, x_{n}$ is a complex coordinate system of $\left(\mathbb{C}^{n+1}, 0\right)$ and $\underline{\partial}=\partial_{x_{0}}, \ldots, \partial_{x_{n}}$. By the finite determinacy theorem, we may assume that $f \in \mathbb{C}[\underline{x}]$. By E.J.N Looijenga [7, 2.B], for a good representative $f: X \longrightarrow T$ where $T \subset \mathbb{C}$ is an open disk at the origin, the restriction $f: X^{\prime} \longrightarrow T^{\prime}$ to $T^{\prime}=T \backslash\{0\}$ and $X^{\prime}=X \backslash f^{-1}(0)$ is a \mathscr{C}^{∞} fibre bundle unique up to diffeomorphism, the Milnor fibration. By J. Milnor [9, 6.5], the general fibre $X_{t}=f^{-1}(t), t \in T^{\prime}$, is homotopy equivalent to a bouquet of μn-spheres and, in particular, its reduced cohomology is $\widetilde{\mathrm{H}}^{k}\left(X_{t}\right) \cong \delta_{k, n} \mathbb{Z}^{\mu}$ where δ is the Kronecker symbol. Since T^{\prime} is locally contractible, the n-th cohomologies $\mathrm{H}(U)=\mathrm{H}^{n}\left(X_{U}\right)$ of $X_{U}=$ $f^{-1}(U)$ form a locally free \mathbb{Z}-sheaf of rank μ and $\mathrm{H}_{\mathbb{C}}=\mathrm{H} \otimes_{\mathbb{Z}} \mathbb{C}$ is a complex local system of dimension μ. Hence, the sheaf of holomorphic sections $\mathscr{H}=\mathrm{H} \otimes_{\mathbb{Z}} \mathscr{O}_{T^{\prime}}$ of $\mathrm{H}_{\mathbb{C}}$ is a locally free $\mathscr{O}_{T^{\prime}}$-sheaf of rank μ, the cohomology bundle. By P. Deligne [4, 2.23], there is a natural flat connection $\nabla: \mathscr{H} \longrightarrow \mathscr{H} \otimes_{\mathscr{T}_{T^{\prime}}} \Omega_{T^{\prime}}^{1}$ on \mathscr{H} with sheaf of flat sections $\mathrm{H}=\operatorname{ker}(\nabla)$, the Gauss-Manin connection.

2. The Monodromy Representation

Let t be a complex coordinate of $T \subset \mathbb{C}, i: T^{\prime} \longrightarrow T$ the canonical inclusion, and $u: T^{\infty} \longrightarrow T^{\prime}$ the universal covering of T^{\prime} defined by $u(\tau)=\exp (2 \pi \mathrm{i} \tau)$ for a complex coordinate τ of $T^{\infty} \subset \mathbb{C}$. Then the covariant derivative $\nabla_{\partial_{t}}$ of ∇ along ∂_{t} induces a differential operator ∂_{t} on $i_{*} \mathscr{H}$ and the pullback $f^{\infty}: X^{\infty}=X^{\prime} \times_{T^{\prime}} T^{\infty} \longrightarrow T^{\infty}$
is a \mathscr{C}^{∞} fibre bundle with $X_{\tau}^{\infty}=X_{u(\tau)}$, the (canonical) Milnor fibre. Since T^{∞} is contractible, the n-th cohomologies $H(U)=\mathrm{H}^{n}\left(X_{U}^{\infty}\right)$ of $X_{U}^{\infty}=\left(f^{\infty}\right)^{-1}(U)$ form a free \mathbb{Z}-sheaf of rank μ and $u_{*} H$ is the sheaf of multivalued sections of H . Lifting closed paths in T^{\prime} along sections of H defines the monodromy representation $\pi_{1}\left(T^{\prime}, t\right) \longrightarrow \operatorname{Aut}\left(\mathrm{H}_{t}\right)$ on H_{t} inducing the monodromy representation $\pi_{1}\left(T^{\prime}\right) \longrightarrow \operatorname{Aut}(H)$ on the cohomology H of the Milnor fibre. The image M of the counterclockwise generator of $\pi_{1}\left(T^{\prime}\right)$ is called the monodromy operator and fulfills $\mathrm{M}(s)(\tau)=s(\tau+1)$ for $s \in H$. The sheaf H is determined by the monodromy representation up to isomorphism. The following well known theorem is due to E. Brieskorn $[2,0.6]$ and others.

Theorem 1 (Monodromy Theorem). The eigenvalues of the monodromy are roots of unity and its Jordan blocks have size at most $(n+1) \times(n+1)$ and size at most $n \times n$ for eigenvalue 1 .

3. The Gauss-Manin Connection

Let $\mathrm{M}=\mathrm{M}_{s} \mathrm{M}_{u}$ be the decomposition of M into semisimple part M_{s} and unipotent part M_{u} and let $\mathrm{N}=-\frac{\log \mathrm{M}_{u}}{2 \pi \mathrm{i}}$ be the nilpotent part of M. Note that $-2 \pi \mathrm{iN} \in \operatorname{End}_{\mathbb{Q}}\left(H_{\mathbb{Q}}\right)$ where $H_{\mathbb{Q}}=H \otimes_{\mathbb{Z}} \mathbb{Q}$. Let $H_{\mathbb{C}}=\bigoplus_{\lambda} H_{\mathbb{C}}^{\lambda}$ be the decomposition of $H_{\mathbb{C}}=H \otimes_{\mathbb{Z}} \mathbb{C}$ into generalized λ-eigenspaces $H_{\mathbb{C}}^{\lambda}$ of M and $\mathrm{M}^{\lambda}=\left.\mathrm{M}\right|_{H_{\mathrm{C}}^{\lambda}}$. Note that $H_{\mathrm{Q}}=H_{\mathrm{Q}}^{1} \oplus H_{\mathrm{Q}}^{\neq 1}$ where $H_{\mathbb{Q}}^{1} \otimes_{\mathbb{Q}} \mathbb{C}=H_{\mathbb{C}}^{1}$ and $H_{\mathbb{Q}}^{\neq 1} \otimes_{\mathbb{Q}} \mathbb{C}=\bigoplus_{\lambda \neq 1} H_{\mathbb{C}}^{\lambda}$. Then there is an inclusion

$$
H_{\mathbb{C}}^{\mathrm{e}^{-2 \pi \mathrm{i} \alpha}} \xrightarrow{\psi_{\alpha}}\left(i_{*} \mathscr{H}\right)_{0}
$$

defined by $\psi_{\alpha}(A)=t^{\alpha+\mathrm{N}} A=t^{\alpha} \exp (N \log (t))$ with image $C^{\alpha}=\operatorname{im}\left(\psi_{\alpha}\right)$. In particular, the operators M and N act on C^{α}. The following lemma is an immediate consequence of the definition of ψ_{α}.

Lemma 2.

(1) $t \circ \psi_{\alpha}=\psi_{\alpha+1}$ and $\partial_{t} \circ \psi_{\alpha}=\psi_{\alpha-1} \circ(\alpha+\mathrm{N})$.
(2) $t: C^{\alpha} \longrightarrow C^{\alpha+1}$ is bijective and $\partial_{t}: C^{\alpha} \longrightarrow C^{\alpha-1}$ is bijective if $\alpha \neq 0$.
(3) On $C^{\alpha}, t \partial_{t}-\alpha=\mathrm{N}$ and $\exp \left(-2 \pi \mathrm{i} t \partial_{t}\right)=\mathrm{M}^{\mathrm{e}^{-2 \pi \mathrm{i} \alpha}}$.
(4) $C^{\alpha}=\operatorname{ker}\left(t \partial_{t}-\alpha\right)^{n+1}$.

Definition 3. We call $G=\bigoplus_{-1<\alpha \leq 0} \mathbb{C}\{t\}\left[t^{-1}\right] C^{\alpha} \subset\left(i_{*} \mathscr{H}\right)_{0}$ the local Gauss-Manin connection.

The local Gauss-Manin connection is a μ-dimensional $\mathbb{C}\{t\}\left[t^{-1}\right]$-vectorspace and a regular $\mathbb{C}\{t\}\left[\partial_{t}\right]$-module. The generalized α-eigenspaces C^{α} of the operator $t \partial_{t}$ define the decreasing filtration on G by free $\mathbb{C}\{t\}$-modules

$$
V^{\alpha}=\bigoplus_{\alpha \leq \beta<\alpha+1} \mathbb{C}\{t\} C^{\beta}, \quad V^{>\alpha}=\bigoplus_{\alpha<\beta \leq \alpha+1} \mathbb{C}\{t\} C^{\beta}
$$

of rank μ, the V-filtration. In contrast to the ψ_{α} and C^{α}, the V^{α} are independent of the coordinate t. The C^{α} define a splitting

$$
C^{\alpha} \cong V^{\alpha} / V^{>\alpha}=\operatorname{gr}_{V}^{\alpha} G
$$

of the V -filtration and we denote by lead ${ }_{V}$ the leading term with respect to this splitting. The ring $\mathbb{C}\{t\}$ is a free module of rank 1 over the ring

$$
\mathbb{C}\{\{s\}\}=\left\{\sum_{k=0}^{\infty} a_{k} s^{k} \in \mathbb{C} \llbracket s \rrbracket \left\lvert\, \sum_{k=0}^{\infty} \frac{a_{k}}{k!} t^{k} \in \mathbb{C}\{t\}\right.\right\}
$$

where $s=\int_{0}^{1} \mathrm{~d} t$ acts by integration. This fact is generalized by the following lemma [13, 1.3.11].
Lemma 4. The action of $s=\partial_{t}^{-1}$ on $V^{>-1}$ extends to a $\mathbb{C}\{\{s\}\}$-module structure and $V^{>-1}$ is a free $\mathbb{C}\{\{s\}\}$-module of rank μ.

Since $\left[\partial_{t}, t\right]=1,[t, s]=s^{2}$ and hence

$$
t=s^{2} \partial_{s}, \quad \partial_{t} t=s \partial_{s}
$$

We call a free $\mathbb{C}\{\{s\}\}$-submodule of $V^{>-1}$ of rank μ a $\mathbb{C}\{\{s\}\}$-lattice and call a $t \partial_{t}$-invariant $\mathbb{C}\{\{s\}\}$-lattice saturated. A basis \underline{e} of a $\mathbb{C}\{\{s\}\}$ lattice defines a matrix $A=\sum_{k \geq 0} A_{k} s^{k}$ of t by $t \underline{e}=\underline{e} A$ such that

$$
t \cong A+s^{2} \partial_{s}
$$

is the basis representation of t.

4. The Brieskorn Lattice

The description of cohomology in terms of holomorphic differential forms by the de Rham isomorphism leads to the definition of the Brieskorn lattice

$$
H^{\prime \prime}=\Omega_{X, 0}^{n+1} / \mathrm{d} f \wedge \mathrm{~d} \Omega_{X, 0}^{n-1} .
$$

By E. Brieskorn [2, 1.5] and M. Sebastiani [15], the Brieskorn lattice is the stalk at 0 of a locally free $\mathscr{O}_{T^{-}}$-sheaf $\mathscr{H}^{\prime \prime}$ of rank μ with $\left.\mathscr{H}^{\prime \prime}\right|_{T^{\prime}} \cong \mathscr{H}$ and hence $H^{\prime \prime} \subset\left(i_{*} \mathscr{H}\right)_{0}$. The regularity of the Gauss-Manin connection proved by E. Brieskorn $[2,2.2]$ implies that $H^{\prime \prime} \subset G$. B. Malgrange [8, 4.5] improved this result by the following theorem.
Theorem 5. $H^{\prime \prime} \subset V^{-1}$.
By E. Brieskorn [2, 1.5], the Leray residue formula can be used to express the action of ∂_{t} in terms of differential forms by $\partial_{t}[\mathrm{~d} f \wedge \omega]=$ [d ω]. In particular, $s H^{\prime \prime} \subset H^{\prime \prime}$ and

$$
H^{\prime \prime} / s H^{\prime \prime} \cong \Omega_{X, 0}^{n+1} / \mathrm{d} f \wedge \Omega_{X, 0}^{n} \cong \mathbb{C}\{\underline{x}\} /\langle\underline{\partial}(f)\rangle .
$$

Since the $V^{>-1}$ is a $\mathbb{C}\{\{s\}\}$-module, theorem 5 implies that $H^{\prime \prime}$ is a free $\mathbb{C}\{\{s\}\}$-module of rank μ and the action of s can be expressed in terms of differential forms by

$$
s[\mathrm{~d} \omega]=[\mathrm{d} f \wedge \omega] .
$$

For computational purposes, we may restrict our attention to the completion of the Brieskorn lattice. E. Brieskorn [2, 3.4] proved the following theorem.
Theorem 6. The $\mathfrak{m}_{X, 0^{-}}$and $\mathfrak{m}_{T, 0^{-}}$-adic topologies on $H^{\prime \prime}$ coincide.
While the proof of theorem 6 is highly non-trivial, the analogous statement for the $\mathbb{C}\{\{s\}\}$-structure of the Brieskorn lattice is quite elementary [13, 1.5.4].

Proposition 7. The $\mathfrak{m}_{X, 0^{-}}$and $\mathfrak{m}_{\mathbb{C}\{\{s\}\}}$-adic topologies on $H^{\prime \prime}$ coincide.
We call the completion $\widehat{H}^{\prime \prime}$ of $H^{\prime \prime}$ the formal Brieskorn lattice. Since completion is faithfully flat, $\widehat{H}^{\prime \prime}$ is a free $\mathbb{C} \llbracket s \rrbracket$-module of rank μ with a differential operator $t=s^{2} \partial_{s}$. The equality $[\underline{\partial}(f) \bar{g} \mathrm{~d} \underline{x}]=s[\underline{\partial}(\bar{g}) \mathrm{d} \underline{x}]$ motivates to consider the differential relation $\underline{\partial}(f)-s \underline{\partial}$. It is not difficult to prove that it defines the formal Brieskorn lattice as a quotient of $\mathbb{C} \llbracket s, \underline{x} \rrbracket[13,1.5 .6]$.

Proposition 8.

$$
\mathbb{C} \llbracket s, \underline{x} \rrbracket \xrightarrow{\pi_{H}} \mathbb{C} \llbracket s, \underline{x} \rrbracket /\langle\underline{\partial}(f)-s \underline{\partial}\rangle \mathbb{C} \llbracket s, \underline{x} \rrbracket \cong \cong_{\mathbb{C} \llbracket s \rrbracket} \widehat{H}^{\prime \prime} .
$$

Proposition 8 is the starting point for an algorithmic approach to the local Gauss-Manin connection. Let $<_{\underline{x}}$ be a local degree ordering on $\mathbb{C} \llbracket \underline{x} \rrbracket$ such that $\operatorname{deg}(\underline{x})<\underline{0}$ and $\operatorname{deg}(\underline{\partial})=-\operatorname{deg}(\underline{x})>\underline{0}$. One can compute a polynomial standard basis \underline{g} of the Jacobian ideal $\langle\underline{\partial}(f)\rangle$ and a polynomial transformation matrix $B=\left(\bar{b}^{j}\right)^{j}$ such that $\underline{g}=\underline{\partial}(f) B$. By Nakayama's lemma, $\underline{m}=\left(\underline{x}^{\underline{\beta}}\right)_{\underline{\underline{\beta}} \underline{\underline{\beta}} \notin(\operatorname{lead}(\underline{g})\rangle}$ represents a $\mathbb{C} \llbracket s \rrbracket$-basis $[\underline{m}]$ of $\widehat{H}^{\prime \prime}$. Let $<_{s}$ be the local degree ordering on $\mathbb{C} \llbracket s \rrbracket$ and let $<=\left(<_{s},<_{\underline{x}}\right)$ be the block ordering of $<_{s}$ and $<_{\underline{x}}$ on $\mathbb{C} \llbracket s, \underline{x} \rrbracket$.

Definition 9.

(1) $\underline{h}=\left(\left(g_{j}-s \underline{\partial} \bar{b}^{j}\right) \underline{x}^{\underline{\beta}}\right)_{j, \underline{\beta}}$.
(2) $\operatorname{deg}(s)=\min \operatorname{deg}(\underline{m})+2 \min \operatorname{deg}(\underline{x})<0$.
(3) $N=\left(N_{K}\right)_{K \geq 0}$ with $N_{K}=K \operatorname{deg}(s)-2 \min \operatorname{deg}(\underline{x})$.
(4) $V=\left(V_{K}\right)_{K \geq 0}$ with $V_{K}=\left\{p \in \mathbb{C} \llbracket s, \underline{x} \rrbracket \mid \operatorname{deg}(p)<N_{K}\right\}+\langle s\rangle^{K} \subset$ $\mathbb{C} \llbracket s, \underline{x} \rrbracket$.
Since $\widehat{H}^{\prime \prime}$ is a free $\mathbb{C} \llbracket s \rrbracket$-module, \underline{h} is a standard basis of the $\mathbb{C} \llbracket s \rrbracket$ module $\langle\underline{\partial}(f)-s \underline{\partial}\rangle \mathbb{C} \llbracket s, \underline{x} \rrbracket$. The following lemma is technical but not very deep and can be generalized to formal differential deformations [13, 2.2.10].

Lemma 10. $V=\left(V_{K}\right)_{K \geq 0}$ is a basis of the $\langle s, \underline{x}\rangle$-adic topology of $\mathbb{C} \llbracket s, \underline{x} \rrbracket$ with $\pi_{H}\left(V_{K}\right)=\langle s\rangle^{K} \widehat{H}^{\prime \prime}$. If $s^{\alpha} \operatorname{lead}\left(h_{j, \underline{\beta}}\right) \in V_{K}$ then $s^{\alpha} h_{j, \underline{\beta}} \in V_{K}$.

Lemma 10 leads to a normal form algorithm for the Brieskorn lattice [13, 2.2.12]. It computes a normal form with respect to \underline{h} and hence
the [\underline{m}]-basis representation in $H^{\prime \prime}$. The normal form computation up to a given degree can be continued up to any higher degree without additional computational effort. The normal form algorithm for the Brieskorn lattice is a special case of a modification of Buchberger's normal form algorithm [3] for power series rings where termination is replaced by adic convergence [13, 2.1.19].

5. Mixed Hodge Structure

By lemma 2, there is a \mathbb{C}-isomorphism

$$
H_{\mathrm{C}}=\bigoplus_{-1<\alpha \leq 0} H_{\mathbb{C}}^{\mathrm{e}^{-2 \pi \mathrm{i} \alpha}} \xrightarrow{\psi} \bigoplus_{-1<\alpha \leq 0} C^{\alpha} \cong V^{>-1} / s V^{>-1}
$$

defined by $\psi=\bigoplus_{-1<\alpha \leq 0} \psi_{\alpha}$ and the monodromy M on $H_{\mathbb{C}}$ corresponds to $\exp \left(-2 \pi \mathrm{i} t \partial_{t}\right)$ on $\bigoplus_{-1<\alpha \leq 0} C^{\alpha}$.

The Hodge filtration $F=\left(F_{k}\right)_{k \in \mathbb{Z}}$ on $V^{>-1}$ defined by J. Scherk and J.H.M. Steenbrink [14] is the increasing filtration by the free $\mathbb{C}\{\{s\}\}$ modules

$$
F_{k}=F^{n-k}=\left(s^{-k} H^{\prime \prime}\right) \cap V^{>-1}
$$

of rank μ. Via the splitting $C^{\alpha} \cong \operatorname{gr}_{V}^{\alpha} V^{>-1}$, the Hodge filtration induces an increasing Hodge filtration $F C^{\alpha}$ by \mathbb{C}-vectorspaces on C^{α} and, via ψ, on $H_{\mathbb{C}}$. The nilpotent operator $-2 \pi \mathrm{iN} \in \operatorname{End}_{\mathbb{Q}}\left(H_{\mathbb{Q}}\right)$ defines an increasing weight filtration $W=\left(W_{k}\right)_{k \in \mathbb{Z}}$ centered at n resp. $n+1$ on $H_{\mathrm{Q}}^{\neq 1}$ resp. H_{Q}^{1}.
Theorem 11. The weight filtration W on H_{Q} and the Hodge filtration F on $H_{\mathbb{C}}$ define a mixed Hodge structure on the cohomology H of the Milnor fibre and the operator N is a morphism of mixed Hodge structures of type $(-1,-1)$.

The mixed Hodge structure on the cohomology of the Milnor fibre was discovered by J.H.M. Steenbrink [16] and described in terms of the Brieskorn lattice by A.N. Varchenko [17].

The nilpotent operator N on C^{α} defines an increasing weight filtration $W=\left(W_{k}\right)_{k \in \mathbb{Z}}$ centered at n on C^{α}. By definition N commutes with ψ_{α} and hence

$$
\psi_{\alpha}\left(W H_{\mathbb{C}}^{\mathrm{e}^{-2 \pi \mathrm{i} \alpha}}\right)= \begin{cases}W C^{\alpha}, & \alpha \notin \mathbb{Z} \\ W[-1] C^{\alpha}, & \alpha \in \mathbb{Z}\end{cases}
$$

The weight filtration $W=\bigoplus_{-1<\alpha<0} \mathbb{C}\{\{s\}\} W C^{\alpha}$ on $V^{>-1}$ by free $\mathbb{C}\{\{s\}\}$-modules induces $W C^{\alpha}$ via the splitting $C^{\alpha} \cong \operatorname{gr}_{V}^{\alpha} V^{>-1}$.

The spectral pairs are those pairs $(\alpha, l) \in \mathbb{Q} \times \mathbb{Z}$ with positive multiplicity

$$
d_{l}^{\alpha}=\operatorname{dim}_{\mathbb{C}} \operatorname{gr}_{l}^{W} \operatorname{gr}_{V}^{\alpha} \operatorname{gr}_{0}^{F} V^{>-1}
$$

Via the isomorphism ψ, they correspond to the Hodge numbers

$$
h_{\lambda}^{p, l-p}=\operatorname{dim}_{\mathbb{C}} \operatorname{gr}_{F}^{p} \operatorname{gr}_{l}^{W} H_{\mathbb{C}}^{\lambda}
$$

by $d_{l}^{\alpha+p}=h_{\mathrm{e}^{-2 \pi \mathrm{i} \alpha}}^{n-p, l-n+p}$ for $-1<\alpha<0$ and $d_{l}^{p}=h_{1}^{n-p, l+1-n+p}$ and inherit the symmetry properties

$$
d_{l}^{\alpha}=d_{l}^{2 n-l-1-\alpha}, \quad d_{l}^{\alpha}=d_{2 n-l}^{\alpha-n+l}, \quad d_{l}^{\alpha}=d_{2 n-l}^{n-1-\alpha}
$$

from the mixed Hodge structure. The spectral numbers are those numbers $\alpha \in \mathbb{Q}$ with positive multiplicity

$$
d^{\alpha}=\operatorname{dim}_{\mathbb{C}} \operatorname{gr}_{V}^{\alpha} \operatorname{gr}_{0}^{F} V^{>-1}=\sum_{l \in \mathbb{Z}} d_{l}^{\alpha}
$$

and have the symmetry property $d^{\alpha}=d^{n-1-\alpha}$.

6. M. Saito's Basis

By P. Deligne [5, 1.2.8], a morphism of mixed Hodge structures is strict for the Hodge filtration. In particular, by theorem 11, N is strict for the Hodge filtration on $H_{\mathbb{C}}$ and on $\mathrm{gr}_{V} V^{>-1}$. Hence, there is a direct sum decomposition $F_{k} C^{\alpha}=\bigoplus_{j \leq k} C^{\alpha, j}$ such that $\mathrm{N}\left(C^{\alpha, k}\right) \subset C^{\alpha, k+1}$, and $s C^{\alpha, k} \subset C^{\alpha+1, k-1}$. By definition of the Hodge filtration,

$$
\operatorname{lead}_{V}\left(H^{\prime \prime}\right)=\sum_{\alpha \in \mathbb{Q}} \sum_{k \leq 0} \mathbb{C}\{\{s\}\} C^{\alpha, k}=\bigoplus_{\alpha \in \mathbb{Q}} \mathbb{C}\{\{s\}\} G^{\alpha}
$$

where $G^{\alpha}=C^{\alpha, 0}$. Let $<_{\mathbb{Q} \times \mathbb{Z}}=\left(>_{\mathbb{Q}},>_{\mathbb{Z}}\right)$ be the block ordering of $>_{\mathbb{Q}}$ and $>_{\mathbb{Z}}$ on the index set $\mathbb{Q} \times \mathbb{Z}$. Then the Hodge filtration defines a refinement of the V -filtration on $V^{>-1}$ by free $\mathbb{C}\{\{s\}\}$-modules $V^{\alpha, k}=F_{k} C^{\alpha} \oplus V^{>\alpha}$ of rank μ and the $C^{\alpha, k}$ define a splitting of this refined filtration compatible with s. We call the refinement the Hodge refinement and the splitting a Hodge splitting. The following lemma follows essentially from the fact that $\mathbb{C}\{\{s\}\}$ is a discrete valuation ring [13, 1.10.5,1.10.10].
Lemma 12. Let H be a $\mathbb{C}\{\{s\}\}$-lattice and $C^{\alpha, k}$ a splitting of a refinement of the V-filtration compatible with s. Then a minimal standard basis of H is a $\mathbb{C}\{\{s\}\}$-basis and there is a reduced minimal standard basis of H.

In particular, there is a reduced minimal standard basis of $H^{\prime \prime}$ for a Hodge splitting. The following proposition follows essentially from lemma 2.3 [13, 1.10.12].
Proposition 13. Let \underline{h} be a reduced minimal standard basis of $H^{\prime \prime}$ for a Hodge splitting. Then the $\underline{\text { h-matrix } A}$ of t has degree 1. In particular,

$$
\left(H^{\prime \prime}, t\right) \stackrel{\underline{h}}{\leftrightarrows}\left(\mathbb{C}\{\{s\}\}^{\mu}, A_{0}+A_{1} s+s^{2} \partial_{s}\right)
$$

is an isomorphism. Moreover, A_{1} is semisimple with eigenvalues the spectral numbers of f added by 1 and $\operatorname{gr}_{V}\left(A_{0}\right)$ can be identified with N .

Note that the matrices A_{0} and A_{1} in proposition 13 determine the differential structure of the Brieskorn lattice. M. Saito [10] first constructed a $\mathbb{C}\{\{s\}\}$-basis of $H^{\prime \prime}$ as in proposition 13 without calling it a reduced minimal standard basis.

7. The Algorithm

We describe an algorithm to compute A_{0} and A_{1} as in proposition 13 [13]. This algorithm can be simplified to compute the complex monodromy, the spectral numbers, or the spectral pairs only [13].

The normal form algorithm for the Brieskorn lattice in section 4 computes the $[\underline{m}]$-matrix $A=\sum_{k \geq 0} A_{k} s^{k}$ of t defined by $t[\underline{m}]=[f \underline{\mathrm{~m}}]=$ $[\underline{m}] A$ up to any degree. We identify the columns of a matrix H with the generators of a submodule $\langle H\rangle \subset \mathbb{C} \llbracket s \rrbracket^{\mu}$ and denote by E the unit matrix. Then $\langle E\rangle$ is the $[\underline{m}]$-basis representation of $\widehat{H}^{\prime \prime}$. Hence, the following two statements hold for $\underline{h}=[\underline{m}]$ with $\kappa=0$ and $H=E$.
($H_{\underline{h}}$) One can compute $\kappa \geq 0$ and a $\mu \times \mu$-matrix H with coefficients in $\mathbb{C}[s]$ of degree at most κ such that $\langle H\rangle$ is the \underline{h}-basis representation of $\widehat{H}^{\prime \prime}$ and $s^{\kappa}\langle E\rangle \subset\langle H\rangle$.
$\left(A_{\underline{h}}\right)$ One can compute the \underline{h}-matrix A of t up to any degree.
Step by step, we improve the $\mathbb{C} \llbracket s \rrbracket$-basis \underline{h} and show that $\left(H_{\underline{h}}\right)$ and $\left(A_{\underline{\underline{h}}}\right)$ hold. After the last step, A_{0} and A_{1} as in proposition 13 can be computed by a basis transformation of A to a reduced minimal standard basis of $\langle H\rangle$ up to a certain degree bound.

We call the canonical projection jet ${ }_{k}: \mathbb{C} \llbracket s \rrbracket \longrightarrow \bigoplus_{j=0}^{k} \mathbb{C} s^{j}$ the k jet. Let the monomial ordering on $\mathbb{C} \llbracket s \rrbracket^{\mu}=\mathbb{C} \llbracket s \rrbracket \otimes_{\mathbb{C}} \mathbb{C}^{\mu}$ be the block ordering $<=\left(<_{s},>_{\mu}\right)$ of the local degree ordering $<_{s}$ on $\mathbb{C} \llbracket s \rrbracket$ and the inverse ordering $>_{\mu}$ on the indices of the basis elements of \mathbb{C}^{μ}.
7.1. The Saturation of $H^{\prime \prime}$. In this step, we show that $\left(H_{\underline{\underline{h}}}\right)$ and $\left(A_{\underline{\underline{h}}}\right)$ hold for a $\mathbb{C} \llbracket s \rrbracket$-basis \underline{h} of a saturated $\mathbb{C} \llbracket s \rrbracket$-lattice.

The increasing sequence of $\mathbb{C} \llbracket s \rrbracket$-lattices defined by

$$
\widehat{H}_{0}^{\prime \prime}=\widehat{H}^{\prime \prime}, \quad \widehat{H}_{k+1}^{\prime \prime}=s \widehat{H}_{k}^{\prime \prime}+t \widehat{H}_{k}^{\prime \prime} \subset \widehat{H}^{\prime \prime}
$$

is stationary since $\widehat{H}^{\prime \prime}$ is noetherian. Hence, the saturation $\widehat{H}_{\infty}^{\prime \prime}=$ $\bigcup_{k \geq 0} \widehat{H}_{k}^{\prime \prime}$ of $\widehat{H}^{\prime \prime}$ is a saturated $\mathbb{C} \llbracket s \rrbracket$-lattice. The $[\underline{m}]$-basis representation $\left\langle H_{k}\right\rangle$ of $\widehat{H}_{k}^{\prime \prime}$ can be computed by

$$
H_{0}=Q_{-1}=E, \quad Q_{k}=\left(\operatorname{jet}_{k}(A)+s^{2} \partial_{s}\right) Q_{k-1}, \quad H_{k+1}=\left(s H_{k} \mid Q_{k}\right)
$$

We successively compute the H_{k} and check in each step if $\left\langle Q_{k}\right\rangle \subset\left\langle H_{k}\right\rangle$ by a standard basis and normal form computation. If $\left\langle Q_{k}\right\rangle \subset\left\langle H_{k}\right\rangle$ then we stop the computation and set $\kappa=k$ and $H_{\infty}=H_{\kappa}$. Then $\left\langle H_{\infty}\right\rangle$ is the $[\underline{m}]$-basis representation of $\widehat{H}_{\infty}^{\prime \prime}$. We replace H_{∞} by a minimal standard basis of $\left\langle H_{\infty}\right\rangle$. Then $\underline{h}=s^{-\kappa} \underline{h} H_{\infty}$ is a $\left.\mathbb{C} \llbracket s\right]$-basis of a saturated $\mathbb{C} \llbracket s \rrbracket$-lattice. By a normal form computation with respect to
H_{∞} up to degree κ, we compute the \underline{h}-basis representation $\left\langle H_{\infty}^{-1} s^{\kappa} E\right\rangle=$ $\left\langle\mathrm{jet}_{\kappa}\left(H_{\infty}^{-1} s^{\kappa} E\right)\right\rangle$ of $\widehat{H}^{\prime \prime}$. Since $\left\langle H_{\infty}\right\rangle \subset\langle E\rangle, s^{\kappa}\langle E\rangle \subset\left\langle H_{\infty}^{-1} s^{\kappa} E\right\rangle$. By a normal form computation with respect to H_{∞} up to degree $\kappa+k$, one can compute the k-jet
$\operatorname{jet}_{k}\left(H_{\infty}^{-1}\left(A-\kappa s E+s^{2} \partial_{s}\right) H_{\infty}\right)=\operatorname{jet}_{k}\left(H_{\infty}^{-1}\left(\operatorname{jet}_{\kappa+k}(A-\kappa s E)+s^{2} \partial_{s}\right) H_{\infty}\right)$
of the \underline{h}-matrix of t for any $k \geq 0$.
7.2. The V-Filtration. In this step, we show that $\left(H_{\underline{v}}\right)$ and $\left(A_{\underline{v}}\right)$ hold for a $<_{\mathbb{Q}}$-increasingly ordered $\mathbb{C} \llbracket s \rrbracket$-basis \underline{v} of a \widehat{V}^{α} compatible with the direct sum decomposition $\widehat{V}^{\alpha} / s \widehat{V}^{\alpha} \cong \bigoplus_{\alpha \leq \beta<\alpha+1} C^{\beta}$.

Since \underline{h} is a $\mathbb{C} \llbracket s \rrbracket$-basis of a saturated $\mathbb{C}\{\{s\}\}$-lattice, $A_{0}=0$ and, by theorem 1, the eigenvalues of A_{1} are rational. In order to compute the eigenvalues of A_{1}, we transform A_{1} to Hessenberg form and factorize the characteristic polynomials of its blocks. Then we compute a constant $\mathbb{C} \llbracket s \rrbracket$-basis transformation such that $A_{1}=\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{\mu}\right)+N$ with $\alpha_{1} \leq \cdots \leq \alpha_{\mu}$ where $\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{\mu}\right)$ denotes the diagonal matrix with entries $\alpha_{1}, \ldots, \alpha_{\mu}$. If $\alpha_{\mu}-\alpha_{1}<1$ then $\underline{v}=\underline{h}$ is a $<_{\mathbb{Q}}$-increasingly ordered $\mathbb{C} \llbracket s \rrbracket$-basis \underline{v} of a \widehat{V}^{α} compatible with the direct sum decomposition $\widehat{V}^{\alpha} / s \widehat{V}^{\alpha} \cong \bigoplus_{\alpha \leq \beta<\alpha+1} C^{\beta}$. If $\alpha_{\mu}-\alpha_{1} \geq 1$ then we proceed as follows. Let

$$
A=\left(\begin{array}{ll}
A^{1,1} & A^{1,2} \\
A^{2,1} & A^{2,2}
\end{array}\right)
$$

such that $A_{0}=0, A_{1}^{1,2}=0, A_{1}^{2,1}=0$, and the eigenvalues of $A_{1}^{1,1}$ are the eigenvalues α of A_{1} with $\alpha<\alpha_{1}+1$. Then the $\mathbb{C} \llbracket s \rrbracket\left[s^{-1}\right]$-basis transformation

$$
H \mapsto\left(\begin{array}{cc}
\frac{1}{s} & 0 \\
0 & 1
\end{array}\right) H, \quad A \mapsto\left(\begin{array}{cc}
\frac{1}{s} & 0 \\
0 & 1
\end{array}\right)\left(A+s^{2} \partial_{s}\right)\left(\begin{array}{ll}
s & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
A^{1,1}+s & \frac{1}{s} A^{1,2} \\
s A^{2,1} & A^{2,2}
\end{array}\right)
$$

decreases $\alpha_{\mu}-\alpha_{1}$ and the degree up to which A is computed by 1 and increases κ by 1 . After at most n such transformations, $\alpha_{\mu}-\alpha_{1}<1$.
7.3. The Canonical V-Splitting. In this step, we show that $\left(H_{\underline{c}}\right)$ and $\left(A_{\underline{c}}\right)$ hold for a $<_{\mathbb{Q}}$-increasingly ordered \mathbb{C}-basis \underline{c} of a direct sum $\bigoplus_{\alpha \leq \beta<\alpha+1} C^{\beta}$ compatible with the direct sum.

Let \underline{c} be the image of $[\underline{v}]$ under the splitting $\widehat{V}^{\alpha} / s \widehat{V}^{\alpha} \cong \bigoplus_{\alpha \leq \beta<\alpha+1} C^{\beta}$. By Nakayama's lemma, \underline{c} is a \mathbb{C}-basis of $\bigoplus_{\alpha \leq \beta<\alpha+1} C^{\beta}$ compatible with the direct sum. The eigenvalues of the commutator $\left[\cdot, A_{1}\right] \in \operatorname{End}_{\mathbb{C}}\left(\mathbb{C}^{\mu^{2}}\right)$ are the differences of the eigenvalues of A_{1}. Since $\alpha_{\mu}-\alpha_{1}<1$, $\left[\cdot, A_{1}\right]-k \in \mathrm{GL}_{\mu^{2}}(\mathbb{C})$ for $k \geq 1$. Let $U=\sum_{j=0}^{\infty} U_{j} s^{j}$ be the $\mathbb{C} \llbracket s \rrbracket-$ basis transformation defined by $\underline{c}=\underline{v} U$. Then $U_{0}=E$ and $U A_{1} s=$ $\left(A+s^{2} \partial_{s}\right) U$ or equivalently

$$
U_{k}=\left(\left[\cdot, A_{1}\right]-k\right)^{-1} \sum_{j=0}^{k-1} A_{k-j+1} U_{j}
$$

for $k \geq 1$ and hence one can compute U up to any degree. Since $U_{0}=E$ and $\kappa \geq 0$, jet ${ }_{\kappa}(U)$ is a minimal standard basis of $\langle E\rangle$. By a normal form computation with respect to U up to degree κ, we compute the \underline{c}-basis representation $\left\langle U^{-1} H\right\rangle=\left\langle\operatorname{jet}_{\kappa}\left(\operatorname{jet}_{\kappa}(U)^{-1} H\right)\right\rangle$ of $\widehat{H}^{\prime \prime}$ and $A_{1} s$ is the \underline{c}-matrix of t.

7.4. A Hodge Splitting.

In this step, we show that $\left(H_{\underline{f}}\right)$ and $\left(A_{\underline{f}}\right)$ hold for a $<_{\mathbb{Q} \times \mathbb{Z}}$-decreasingly ordered \mathbb{C}-basis \underline{f} of a direct sum $\bigoplus_{\alpha \leq \beta<\alpha+1} \bigoplus_{k \in \mathbb{Z}} C^{\beta, k}$ compatible with the direct sum and that one can compute A_{0} and A_{1} as in proposition 13 .

We compute a standard basis of H up to degree κ in order to compute the \underline{c}-basis representation of the Hodge filtration F. The nilpotent part of A_{1} is the \underline{c}-basis representation of N . By computing images and quotients of \mathbb{C}-vectorspaces, we compute the \underline{c}-basis representation of a Hodge splitting $F_{k} C^{\beta}=\bigoplus_{j \leq k} C^{\beta, j}$. Then we compute a constant $\mathbb{C} \llbracket s \rrbracket$ basis transformation $\underline{f}=\underline{c} U$ such that \underline{f} is a $<_{\mathbb{Q} \times \mathbb{Z}}$-decreasingly ordered C-basis of the direct sum $\bigoplus_{\alpha \leq \beta<\alpha+1} \bigoplus_{k \in \mathbb{Z}} C^{\beta, k}$ compatible with the direct sum.

We replace H by a reduced minimal standard basis of $\langle H\rangle$ up to degree $\kappa+1$. By a normal form computation with respect to H up to degree $\kappa+1$, we compute the 1 -jet
$\operatorname{jet}_{1}\left(H^{-1}\left(A+s^{2} \partial_{s}\right) H\right)=\operatorname{jet}_{1}\left(\operatorname{jet}_{\kappa+1}(H)^{-1}\left(\operatorname{jet}_{\kappa+1}(A)+s^{2} \partial_{s}\right) \operatorname{jet}_{\kappa+1}(H)\right)$
of the $\underline{c} H$-matrix A of t in order to compute A_{0} and A_{1} as in proposition 10.

8. An Example

The algorithm in section 7 is implemented in the computer algebra system Singular [6] in the procedure tmatrix in the library gaussman.lib [12]. In an example Singular session, we compute the differential structure of the Brieskorn lattice of the singularity of type $T_{2,5,5}$ defined by the polynomial $f=x^{2} y^{2}+x^{5}+y^{5}$.

First, we load the Singular library gaussman.lib:

```
> LIB "gaussman.lib";
```

Then, we define the local ring $R=\mathbb{Q}[x, y]_{\langle x, y\rangle}$ with the local degree ordering ds as monomial ordering and the polynomial $f=x^{2} y^{2}+x^{5}+$ $y^{5} \in R$:

```
> ring R=0,(x,y),ds;
> poly f=x2y2+x5+y5;
```

Finally, we compute A_{0} and A_{1} as in proposition 10:

```
> list A=tmatrix(f);
```

The result is the list $\mathrm{A}=\mathrm{A}[1], \mathrm{A}[2]$ such that $\mathrm{A}[\mathrm{i}+1]=A_{i}$ and
$A_{0}=\left(\begin{array}{cccc}0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \\ 1 & 0 & \cdots & 0\end{array}\right), \quad A_{1}=\operatorname{diag}\left(\frac{1}{2}, \frac{7}{10}, \frac{7}{10}, \frac{9}{10}, \frac{9}{10}, 1, \frac{11}{10}, \frac{11}{10}, \frac{13}{10}, \frac{13}{10}, \frac{3}{2}\right)$.
By proposition $10,\left(H^{\prime \prime}, t\right) \cong\left(\mathbb{C}\{\{s\}\}^{\mu}, A_{0}+s A_{1}+s^{2} \partial_{s}\right)$ and the spectral pairs are $\left(-\frac{1}{2}, 2\right),\left(-\frac{3}{10}, 1\right)^{2},\left(-\frac{1}{10}, 1\right)^{2},(0,1),\left(\frac{1}{10}, 1\right)^{2},\left(\frac{3}{10}, 1\right)^{2}$, $\left(\frac{1}{2}, 0\right)$.

References

[1] V.I. Arnold, S.M. Gusein-Zade, and A.N. Varchenko. Singularities of Differentiable Maps, volume II. Birkhäuser, 1988.
[2] E. Brieskorn. Die Monodromie der isolierten Singularitäten von Hyperflächen. Manuscr. Math., 2:103-161, 1970.
[3] B. Buchberger. Gröbner bases: an algorithmic method in polynomial ideal theory. In N.K. Bose, editor, Recent trends in multidimensional system theory. Reidel, 1985.
[4] P. Deligne. Equations différentielles à points singuliers réguliers, volume 163 of Lect. Notes Math. Springer, 1970.
[5] P. Deligne. Théorie de Hodge, II. Publ. Math. I.H.E.S, 40:5-57, 1972.
[6] G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 2.0.3. A Computer Algebra System for Polynomial Computations, Centre for Computer Algebra, University of Kaiserslautern, 2002. http://www.singular.uni-kl.de.
[7] E.J.N Looijenga. Isolated Singular Points on Complete Intersections, volume 77 of LMS Lect. Note Series. Cambr. Univ. Press, 1984.
[8] B. Malgrange. Intégrales asymptotiques et monodromie. Ann. scient. Ec. Norm. Sup., 7:405-430, 1974.
[9] J. Milnor. Singular Points on Complex Hypersurfaces, volume 61 of Ann. Math. Stud. Princ. Univ. Press, 1968.
[10] M. Saito. On the structure of Brieskorn lattices. Ann. Inst. Fourier Grenoble, 39:27-72, 1989.
[11] M. Schulze. Algorithms for the Gauss-Manin connection. Journ. Symb. Comp., 32(5):549-564, 2001.
[12] M. Schulze. gaussman.lib. Singular 2.0.3 library, Centre for Computer Algebra, University of Kaiserslautern, 2001. http://www.singular.uni-kl.de.
[13] M. Schulze. Algorithmic Gauss-Manin Connection. PhD thesis, University of Kaiserslautern, 2002.
[14] J. Scherk and J.H.M. Steenbrink. On the mixed Hodge structure on the cohomology of the Milnor fibre. Math. Ann., 271:641-655, 1985.
[15] M. Sebastiani. Preuve d'une conjecture de Brieskorn. Manuscr. Math., 2:301308, 1970.
[16] J. Steenbrink. Mixed Hodge structure on the vanishing cohomology. In Real and complex singularities, pages 525-562. Nordic summer school, Oslo, 1976.
[17] A.N. Varchenko. Asymptotic Hodge structure in the vanishing cohomology. Math. USSR Izvestija, 18(3):496-512, 1982.
M. Schulze, Department of Mathematics, D-67653 Kaiserslautern E-mail address: mschulze@mathematik.uni-kl.de

