- Instructor: Dr. Mathias Schulze
- E-mail: mschulze@math.okstate.edu
- Phone: (405) 744-5773
- Office: MSCS 406
- Office Hours: MWF 11:30am-12:20pm and by appointment

- Class Meeting: MWF, 10:30am-11:20am, HES 236
- Textbook: James Stewart,
*Calculus, Early Transcendentals*, Custon Edition for OSU, 6th edition, Brooks Cole (2007). - Online Homework: https://www.webassign.net/login.html
- Course Web Page: http://www.math.okstate.edu/~mschulze/teaching/11F-MATH2153
- OSU Syllabus Attachment: http://academicaffairs.okstate.edu/faculty-a-staff/47-syllabus-fall

You are expected to attend every class meeting. Class attendance means that you come to class on time and stay for the entire class period. Independed of your class attendence, it is your responsibility to learn the material covered in class, and that from the corresponding sections in your textbook. By not attending a class meeting you can loose credit if you miss a quiz.

Homework will be assigned and submitted in the online system *WebAssign*.
To get started, follow the instructions in http://www.math.okstate.edu/~mschulze/teaching/11F-MATH2153/self-enrollment.pdf using the *Class Key*, received by email or at the first class meeting, and the *Access Code* that comes with your textbook.
You can find some useful tips for using *WebAssign* in http://www.math.okstate.edu/~mschulze/teaching/11F-MATH2153/webassign-tips.pdf.
For any problems with *WebAssign*, go to https://www.webassign.net/user_support/student/ for guides, FAQs, or to contact tech support.

There will be 3 midterm exams and a final exam. Date and time for each exam will be announced in class and appear online in the course schedule. Make-up exams will be given only under exceptional circumstances and if you contact me in advance.

Be prepared for 5-minutes in-class quizzes. These quizzes will not be announced and there are no make-up quizzes.

Books, notes, electronic devices, and any kind of headwear that covers part of your face are not permitted during exams or quizzes.

To gain credit your answers must be clearly presented. Your work must show how you proceeded to find the answer or why your answer is correct. Scratch work should be clearly separated from what is to be graded and the final result should be marked by drawing a rectangle around it.

Your course score will be the maximum of the scores computed based on methods A and B below.

Homework+Quizzes | 3 Midterm Exams | Final Exam | |

Course Score (Method A) | 30% | 3 x 15% | 25% |

Course Score (Method B) | 30% | 3 x 10% | 40% |

6-Weeks Score | 50% | 1 x 50% | NA |

Your course/6-weeks score will be truncated to an integer percentage and determines your course/6-weeks letter grade as follows.

Score | 0-49% | 50-64% | 65-79% | 80-89% | 90-100% |
---|---|---|---|---|---|

Letter Grade | F | D | C | B | A |

Curving may be applied in form of a linear adjustment to all scores on a particular exam. I reserve the right to decide borderline cases based on class attendance and subjective impressions such as effort and conscientiousness.

Your starting points are the textbook and the lecture. It is easier to follow the lecture if you have seen the material before and presented from a slightly different point of view. I strongly recommend that you read each section in your textbook at home before it is covered in class. Try to isolate what you do not understand and be prepared to ask questions in class.

Do not hesitate to ask questions. If something is unclear to you in class, just ask. You can be sure that other students have the same question but do not dare to ask. If you let me know what your problems are, I can adapt the lecture and make it easier for you to follow. There are no stupid questions. On the contrary, asking the right question is often an important step in the process of solving a problem.

The importance of working on example problems can not be overemphasized. Work on the homework assignment intensively and pick additional similar problems from the exercises sections of your textbook.

Discussion is crucial to understand mathematics. I strongly encourage you to discuss both the material covered in class and your solutions of the homework problems with other students in your section. The best way to check your own understanding is to explain to someone else.

If you realize that you do not understand the homework problems, seek help immediately. With a backlog of not understood material it extremely difficult to catch up with the class again.

Free tutoring and other services for this and similar mathematics courses are provided by the Mathematics Learning Resource Center (MLRC). The MLRC is located on the 4th floor of the classroom building and you need to check in for tutoring in room CLB 420. For more information, see http://www.math.okstate.edu/mlrc.

You are always welcome to see me in my office hour or contact me by email if you have any questions or problems. If my office hours do not fit your schedule, please contact me by email for an appointment.

The following course schedule is preliminary.

Class Meeting |
Date | Sections in Textbook |
Subject/Exam | Addendum |
---|---|---|---|---|

1 | 08/22 | 7.1 | Integration by Parts | |

2 | 08/24 | 7.1 7.2 | ContinuedTrigonometric Integrals | |

3 | 08/26 | 7.2 | Continued | |

4 | 08/29 | 7.3 | Trigonometric Substitution | |

5 | 08/31 | 7.3 | Continued | |

6 | 09/02 | 7.4 | Integration of Rational Functions by Partial Fractions | |

- | 09/05 | - | University holiday | |

7 | 09/07 | 7.4 | Continued | |

8 | 09/09 | 7.5 | Strategy for Integration | |

9 | 09/12 | 7.8 | Improper Integrals | |

10 | 09/14 | 7.8 | Continued | |

11 | 09/16 | 8.1 | Arc Length | |

12 | 09/19 | 8.2 | Area of a Surface of Revolution | |

13 | 09/21 | 8.3 | Applications to Physics and Engeneering | |

14 | 09/23 | 7.1-7.5,7.8,8.1-8.3 | Review for Exam 1 | Review Problems: 7.1:3-24; 7.2:1-36; 7.3:4-20; 7.5:11-28; 7.8:7-22; 8.1:7-14; 8.2:5-12. |

15 | 09/26 | 7.1-7.5,7.8,8.1-8.3 | Exam 1 | |

16 | 09/28 | 11.1 | Sequences | |

17 | 09/30 | 11.1 11.2 | ContinuedSeries | |

18 | 10/03 | 11.2 | Continued | |

19 | 10/05 | 11.3 | The Integral Test and Estimates of Sums | |

20 | 10/07 | 11.3 | Continued | |

21 | 10/10 | 11.4 | The Comparison Tests | |

22 | 10/12 | 11.4 11.5 | ContinuedAlternating Series | |

- | 10/14 | - | Students' Fall Break (No Classes) | |

23 | 10/17 | 11.5 | Continued | |

24 | 10/19 | 11.6 | Absolute Convergence and the Ratio and Root Tests | |

25 | 10/21 | 11.6 | Continued | |

26 | 10/24 | 11.7 | Strategy for Testing Series | |

27 | 10/26 | 11.1-11.7 | Review for Exam 2 | Review Problems: formulation of definitions and results; conceptual understanding; 11.2.11-34; 11.3.3-8,15-26,34-37; 11.4.3-18; 11.5.9-20; 11.7.1-20 |

28 | 10/28 | 11.1-11.7 | Exam 2 | |

29 | 10/31 | 11.8 | Power Series | |

30 | 11/02 | 11.8 | Continued | |

31 | 11/04 | 11.9 | Representations of Functions as Power Series | |

32 | 11/07 | 11.10 | Taylor and Maclaurin Series | |

33 | 11/09 | 11.10 | Continued | |

34 | 11/11 | 10.1 | Curves Defined by Parametric Equations | |

35 | 11/14 | 10.2 | Calculus with Parametric Curves | |

36 | 11/16 | 10.2 | Continued | |

37 | 11/18 | 10.3 | Polar Coordinates | |

38 | 11/21 | 10.3 | Continued | |

- | 11/23 | - | First day of students' Thanksgiving break (No classes) | |

- | 11/25 | - | University holiday | |

39 | 11/28 | 10.4 | Areas and Lengths in Polar Coordinates | |

40 | 11/30 | 11.8-11.10,10.1-10.4 | Review for Exam 3 | Review Problems: 11.8:3-28; 11.9:3-8,15-18,23-26; 11.10: 13-20,25-36;55-57; 10.3: 1-6; |

41 | 12/02 | 11.8-11.10,10.1-10.4 | Exam 3 | |

42 | 12/05 | 10.5 | Conic Sections | |

43 | 12/07 | 7.1-7.5,7.8,8.1-8.3, 11.1-11.10,10.1-10.5 | Review for Final Exam | |

44 | 12/09 | 7.1-7.5,7.8,8.1-8.3, 11.1-11.10,10.1-10.5 | Review for Final Exam | |

45 | 12/14 10:00-11:50am | 7.1-7.5,7.8,8.1-8.3, 11.1-11.10,10.1-10.5 | Final Exam |

I will respect OSU's commitment to academic integrity and uphold the values of honesty and responsibility that preserve our academic community. For more information, see http://academicintegrity.okstate.edu.

This syllabus may be subject to future changes and it is your responsibility to be informed. Any change of the syllabus will be announced in class and appear online.