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Introduction

Theorem (Hasse) For an elliptic curve, we have

|q + 1−#E (Fq)| ≤ 2
√
q

Example:
Two elliptic curves

E1 : y2 = x3 + x + 3

E2 : y2 = x3 − 17

Experiment:
Distribution of

p + 1−#Ei (Fq)
√
p

for all primes p < 107, i = 1, 2. (Normalized Frobenius traces.)
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Distribution of normalized Frobenius traces

E1 : y2 = x3 + x + 3 E2 : y2 = x3 − 17

j(E1) =
55296

275
j(E2) = 0

(data from 664579 primes, 100 buckets)
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Connections with cohomology

Theorem (Lefschetz trace formula)
V a n-dimensional proper variety with good reduction at p.

#V (Fp) =
2n∑
i=0

(−1)iTr(Frobp | Hi
et(V ,Q`))

Example
For an elliptic curve E we know that H1 is of dimension 2.

#E (Fp) = 1 + p − Tr(Frobp | H1
et(E ,Q`)) = 1 + p − λ− λ

with λ of absolute value
√
p. (Frobenius eigenvalue)
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Properties of Frobenius eigenvalues

Theorem (Deligne-Weil)
The Frobenius eigenvalues of Frobp on Hi

et are algebraic integers of absolute
value pi/2.

Special case: CM elliptic curve
E/Q elliptic curve with complex multiplication by Q(

√
−d).

p a prime of good reduction.

p inert in Q(
√
−d) =⇒ Frobenius eigenvalues±

√
−p

p split in Q(
√
−d) =⇒ Frobenius eigenvalues ∈ Q(

√
−d)

Consequence
#E (Fp) ≡ 1 mod p for all inert primes. (I.e, the inert primes are non-
ordinary.)

Question
Can we generalize this to other classes of varieties?
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K3 surfaces

Definition
A K3 surface is a simply connected algebraic surface having trivial canonical
bundle.

Hodge diamond 1 ‘
0 0

1 20 1
0 0

1

Definition
We have a 22-dimensional vector space of 2-dimensional cycles. We call
the ones represented by algebraic curves algebraic cycles. The others are
transcendental cycles.

Remark
K3 surfaces are one of the possible generalizations of elliptic curves.
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Models of K3 surfaces

Recall
Every elliptic curve has a Weierstraß equation.
(Double-cover of P1 with 4 ramification points.)

Models of K3 surfaces

Degree 2 model: Double cover of P2 ramified at a sextic curve.

Degree 4 model: Quartic in P3.

Degree 6 model: Complete intersection of quadric and cubic in P4.

Degree 8 model: Complete intersection of three quadrics in P5.

Singularities
As long as these models have at most ADE-singularities they still represent
K3 surfaces.
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Construction by cheating I

Split abelian variety
Let E be a CM elliptic curve.
Construct the Kummer surface corresponding to E × E .

Geometric Picard rank 20.

Transcendental Frobenius eigenvalues are the squares of the ones of E .

More generally, take isogenous surface.

Non-split abelian variety

Start with genus 2 curve with real or complex multiplication.
(E.g., use van Wamelen‘s list.)

Construct corresponding Kummer surface.

Frobenius eigenvalues will be products of eigenvalues of the curve.

Conclusion
Try to find examples that are not Kummer.
E.g., geometric Picard rank ≤ 16.
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Construction by cheating II

Surfaces as covers

V1 : w4 = f4(x , y , z)

V2 : f2(x , y , z ,w) = 0, u3 = f3(x , y , z ,w)

V1 is fourfold cover of P2.
V1 has automorphism w 7→ iw .

V2 is a threefold cover of Q : f2(x , y , z ,w) = 0.
V2 has automorphism u 7→ ζ3u.

p ≡ 3 mod 4⇒ #V1(Fp) = #{w2 = f4(x , y , z)} ≡ 1 mod p

p ≡ 2 mod 3⇒ #V2(Fp) = #Q(Fp) ≡ 1 mod p

Question
Can we do better? (more fields, not imaginary quadratic)
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New tool: p-adic point counting

Recent progress
Several people worked on efficient point counting methods for varieties over
finite fields.

Magma implementation
We implemented David Harvey‘s general p-adic method for K3 surfaces of
degree 2 in magma. Is is accessable for everyone via:

WeilPolynomialOfDegree2K3Surface

Details are given in the proceedings.

Questions
How far can we get with this?
What can we do with it?
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Performance of our implementation

Surface
Smooth model w2 = f6(x , y , z).
Compute the characteristic polynomial of the Frobenius action on H2.

Main steps
Work with large generalized Hasse-Witt matrices that consist of coefficients
of high powers of f6.

Time (in seconds)

p powers of f6 matrix build matrix operations

31 12.65 21.05 55.36
61 76.91 21.63 71.00
97 236.92 22.30 73.53

127 489.92 22.36 73.97

Memory: 13 GB, Matrix size: 2080× 2080
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Computing Picard groups

Algebraic part of H2 (for K3 surfaces)

H2 is of dimension 22.

H1,1 is of dimension 20.

At most 20 dimensional vector space of algebraic cycles.

Algebraic cycles result in Frobenius eigenvalues of the form pζ.

Bound the Picard number by the number of these eigenvalues.

Refine this by using the discriminant of the Picard lattice.
(Computable via the Artin-Tate formula.)

Experiment

Take random degree 2 K3 surfaces with 0,±1 coefficients.

Try to get the Picard rank.
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Sample of 171 smooth surfaces
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Interpretation of experiment

Observation
The computed upper bound is sharp in all cases inspected.

Theorem (F. Charles)
If the K3 surface V does not have real multiplication, primes resulting in
sharp upper bounds have positive Dirichlet density.

Remark
Let V be a K3 surface with real multiplication by E . Then the bound is
never sharp if and only if 22−rk(Pic(V ))

deg(E) is odd.

Recall
Real multiplication means that the transcendental lattice T ⊂ H2(V ,Q)
(as a Hodge-structure) has real multiplication.

ToDo
Find K3 surfaces with real multiplication that are not Kummer.
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Arithmetic consequences of additional endomorphisms

Non-ordinary primes

A prime is called non-ordinary if the Newton polygon of the reduction
differs from the Hodge polygon.

For a K3 surface, this means #V (Fp) ≡ 1 mod p.

Theorem (quadratic endomorphism field)
For a K3 surface V /Q, all the primes inert in the endomorphism field are
non-ordinary.

Theorem (quadratic endomorphism field)
For all primes splitting in the endomorphism field the transcendental factor
of the Weil polynomial factors over the endomorphism field.

Idea
Use these theorems to test examples.
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Where to start searching?

Theorem (van Geemen, Jahnel, E.)
The 4-dimensional family

w2 = xyz(x + y + z)l1(x , y , z)l2(x , y , z)

contains 1-parameter sub-families with Picard rank 16 and real multiplica-
tion by Q(

√
d) for exactly those d that are a sum of two squares.

Warning
The theorem uses the analytic moduli space.
Thus, the 6 lines of the ramification locus may not be defined over Q.
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Searching for real multiplication examples

Sample
Consider surfaces like

w2 = f (x , y , z)g(x , y , z)

Search in Cartesian product of lists of forms.

Idea for fast point counting
Precompute as much data as possible for the forms in the lists.
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Point counting using bit vectors

Input: Two lists of ternary forms. A small prime p.
Count points on w2 = fi (x , y , z)gj(x , y , z) over Fp.

Initialization:

List the points of P2(Fp).

Evaluate each form for each point.

Build bit-vector encoding f = 0 or f 6= 0 for each form f .

Build bit-vector encoding f = � or f 6= � for each form f .

Counting
For each pair fi , gj do the following

Apply logical operations on the precomputed bit-vectors.

Generate bit vector encoding figj = 0 or 6= 0.

Generate bit vector encoding figj = � or 6= �.

Use popcount on the bit vectors to count the points on the surface.

Performance
More than 106 surfaces per second.
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Surfaces and conjectural endomorphism fields found

Geometry
All surfaces have geometric Picard rank 16.

Real quadratic endomorphism fields
Q(
√

2),Q(
√

3),Q(
√

5): 1-parameter families.
Q(
√

13): several examples.

Complex sextic endomorphism fields
Q(i , ζ7 + ζ−1

7 ),Q(i , ζ9 + ζ−1
9 ), L(i): one example each.

(Here L ⊂ Q(ζ19) unique cubic subfield.)

Application of p-adic point counting

Generate strong numerical evidence.

Search for patterns in the families.
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One example in detail

Equation

w2 = xyz(49x3 − 304x2y + 570x2z + 361xy2 − 2793xyz

+ 2033xz2 + 361y3 + 2888y2z − 5415yz2 + 2299z3)

Conjecture
Complex multiplication by K = L(i) with L cubic subfield of Q(ζ19).

Numerical evidence (all primes < 1000)

p totally split in K =⇒ transcendental Frobenius eigenvalues in K .

p splits into 3 primes in K =⇒ transcendental Frobenius eigenvalues
are roots of t2 − p2.

p splits into 2 primes in K =⇒ third powers of transcendental Frobenius
eigenvalues are in Q(i).

p totally inert in K =⇒ transcendental factor t6 − p6.
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Statistics – Picard rank of reductions

Effect of real multiplication
The reduction modulo p of a Picard rank 16 K3 surface with real multipli-
cation is 18 or 22.

Experiment
Compute the Picard ranks for all surfaces in the families and all p < 500:

E # relative frequency (in %) of rank 22 per prime
inert primes split primes

min average max min average max
Q(
√

2) 0.00 7.42 25.00 0.00 6.14 25.00

Q(
√

5) 2.33 9.32 24.24 0.00 5.84 16.00

Q(
√

3) 0.00 0.00 0.000 2.33 7.40 20.59

Tabelle: Frequency of reduction to geometric Picard rank 22

Observation: No inert prime in Q(
√

3) and no surface in our Q(
√

3)-family
results in reduction to rank 22.
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Distribution of normalized transcendental Frobenius traces

V1 : w2 = xyz(x + y + z)(3x + 5y + 7z)(−5x + 11y − 2z)

V2 : w2 = xyz(x3 + 3x2y − 2x2z + 5xy2 − xz2 + 3y3 − 2y2z − 3yz2 + 2z3)

M1 = [0.0153, 0.9894, 0.0291, 2.9546, 0.1504] (B = 175000)
M2 = [−0.0039, 0.9705,−0.0865, 5.6756,−1.4465] (B = 250000)
V1 generic rank 16, V2 real multiplication by Q(

√
3)
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Summary

Code available
magma implementation of p-adic point counting for degree 2 K3 surfaces.

Usability
Can do primes beyond 100.

Applications

Sharp upper bounds of Picard ranks in almost all cases.

Study of endomorphism fields.

New examples
Surfaces with various endomorphism fields. (Some conjectural some proven.)
Strong numerical evidence.

Thank you!
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